skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photolysis of 3‐Azido‐3‐phenyl‐3 H ‐isobenzofuran‐1‐one at Ambient and Cryogenic Temperatures †
Abstract Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3‐azido‐3‐phenyl‐3H‐isobenzofuran‐1‐one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV‐Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2‐methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene11N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient.  more » « less
Award ID(s):
2102248
PAR ID:
10445874
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
97
Issue:
6
ISSN:
0031-8655
Page Range / eLocation ID:
p. 1397-1406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration. 
    more » « less
  2. ABSTRACT Triplet arylnitrenes may provide direct access to aryl azo‐dimers, which have broad commercial applicability. Herein, the photolysis ofp‐azidostilbene (1) in argon‐saturated methanol yielded stilbene azo‐dimer (2) through the dimerization of tripletp‐nitrenostilbene (31N). The formation of31Nwas verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2‐methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of1in methanol formed31N(λmax ~ 370 nm, 2.85 × 107 s−1). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s−1) was assigned to a triplet excited state (T) of1. Density functional theory calculations yielded three configurations for T of1, with the unpaired electrons on the azido (TA) or stilbene moiety (TTw, twisted and TFl, flat). The transient was assigned to TTwbased on its calculated spectrum. CASPT2 calculations gave a singlet–triplet energy gap of 16.6 kcal mol−1for1 N; thus, intersystem crossing of11Nto31Nis unlikely at ambient temperature, supporting the formation of31Nfrom T of1. Thus, sustainable synthetic methods for aryl azo‐dimers can be developed using the visible‐light irradiation of aryl azides to form triplet arylnitrenes. 
    more » « less
  3. Despite their versatile synthetic utility, vinyl azides have complex and poorly understood photochemistry. To address this, we investigated the photoreactivity of 1-azidostyrene 1 and 3-phenyl-2H-azirine 2 in solution and cryogenic matrices. In argon matrices, irradiation of 1 at 254 nm yielded 2, phenyl nitrile ylide 3, and N-phenyl ketenimine 4, whereas irradiation at wavelengths above 300 nm produced only 2 and 4. Similarly, irradiation of 1 in 2-methyltetrahydrofuran (mTHF) glass at 77 K mainly yielded absorption corresponding to the formation of 2 (λmax ~ 252 nm). In contrast, irradiation of 2 at wavelengths above 300 nm in Argon matrices yielded no photoproducts, whereas irradiation at 254 nm resulted in the formation of 3. Furthermore, femto- and nanosecond transient absorption and laser flash photolysis were performed to ascertain the transient species and reactive intermediates formed during the photochemical transformations of 1 and 2. The ultrafast transient absorption spectroscopy of 1 resulted in a transient absorption band centered at ca. 472 nm with a time constant τ ~ 22 ps, which was assigned to the first singlet excited state (S1) of 1. The nano-second flash photolysis of 1 (308 nm laser) generated 2 within the laser pulse (~17 ns), and subsequently 2 is excited to yield triplet vinylnitrene 31N with an absorption centered at ~ 440 nm. In contrast, the nano-second laser flash photolysis of 2 with 266 nm laser produced a weak absorption corresponding to 3, whereas 308 nm laser yielded absorption due to triplet vinylnitrene 31N (λmax ~ 440 nm). These findings demonstrate that the direct irradiation of 1 populates S1 of 1, which does not intersystem cross to form 31N, but instead decays to yield 2. Density functional theory calculations supported the characteristics of the excited states and reactive intermediates formed upon irradiation of 1 and 2. 
    more » « less
  4. Organic azides are valuable precursors in synthetic chemistry, particularly for nitrogen-based functionalization through photochemical activation. In this study, the photoreactivities of 4-azido-1-phenylbutan-1-one (1a) and 4-azido-(4-methoxy)phenylbutan-1-one (1b) were investigated using visible-light photocatalysts [Ir(dF(CF3)ppy)2(dtbpy)]PF6 and [Ru(bpy)3]Cl2 to elucidate the mechanistic differences between triplet energy transfer and photoreductive electron transfer pathways. Direct irradiation of 1a in methanol favors the formation of a biradical species via intramolecular H atom abstraction to generate its lowest triplet ketone (T1K) with an (n,π*) configuration, which selectively yields 2-phenyl-1-pyrroline derivative 2a. However, 1b reacts through its less reactive T1K, which has a (π,π*) configuration, to form 2-phenyl-1H-pyrrole as the major product. When sensitized by [Ir(dF(CF3)ppy)2(dtbpy)]PF6, selective excitation of the triplet azido moiety (TA) of both 1a and 1b yields the corresponding pyrroline (2a and 2b) via triplet alkylnitrene (31aN and31bN) formation. In contrast, photoactivation of [Ru(bpy)3]Cl2 in the presence of diisopropylethylamine (DIPEA) results in photoreductive electron transfer, forming azido radical anion intermediates, which cyclize to also yield 2a and 2b. Product studies, cyclic voltammetry, laser flash photolysis, and DFT calculations supported these mechanistic assignments. This work demonstrates complementary approaches to control alkyl azide photoreactivity and unlock new strategies for visible-light-induced nitrogen incorporation. 
    more » « less
  5. Abstract Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10−3 s−1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices. 
    more » « less