skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photolysis of 3‐Azido‐3‐phenyl‐3 H ‐isobenzofuran‐1‐one at Ambient and Cryogenic Temperatures †
Abstract Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3‐azido‐3‐phenyl‐3H‐isobenzofuran‐1‐one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV‐Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2‐methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene11N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient.  more » « less
Award ID(s):
2102248
PAR ID:
10445874
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
97
Issue:
6
ISSN:
0031-8655
Page Range / eLocation ID:
p. 1397-1406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration. 
    more » « less
  2. ABSTRACT Triplet arylnitrenes may provide direct access to aryl azo‐dimers, which have broad commercial applicability. Herein, the photolysis ofp‐azidostilbene (1) in argon‐saturated methanol yielded stilbene azo‐dimer (2) through the dimerization of tripletp‐nitrenostilbene (31N). The formation of31Nwas verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2‐methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of1in methanol formed31N(λmax ~ 370 nm, 2.85 × 107 s−1). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s−1) was assigned to a triplet excited state (T) of1. Density functional theory calculations yielded three configurations for T of1, with the unpaired electrons on the azido (TA) or stilbene moiety (TTw, twisted and TFl, flat). The transient was assigned to TTwbased on its calculated spectrum. CASPT2 calculations gave a singlet–triplet energy gap of 16.6 kcal mol−1for1 N; thus, intersystem crossing of11Nto31Nis unlikely at ambient temperature, supporting the formation of31Nfrom T of1. Thus, sustainable synthetic methods for aryl azo‐dimers can be developed using the visible‐light irradiation of aryl azides to form triplet arylnitrenes. 
    more » « less
  3. Despite their versatile synthetic utility, vinyl azides have complex and poorly understood photochemistry. To address this, we investigated the photoreactivity of 1-azidostyrene 1 and 3-phenyl-2H-azirine 2 in solution and cryogenic matrices. In argon matrices, irradiation of 1 at 254 nm yielded 2, phenyl nitrile ylide 3, and N-phenyl ketenimine 4, whereas irradiation at wavelengths above 300 nm produced only 2 and 4. Similarly, irradiation of 1 in 2-methyltetrahydrofuran (mTHF) glass at 77 K mainly yielded absorption corresponding to the formation of 2 (λmax ~ 252 nm). In contrast, irradiation of 2 at wavelengths above 300 nm in Argon matrices yielded no photoproducts, whereas irradiation at 254 nm resulted in the formation of 3. Furthermore, femto- and nanosecond transient absorption and laser flash photolysis were performed to ascertain the transient species and reactive intermediates formed during the photochemical transformations of 1 and 2. The ultrafast transient absorption spectroscopy of 1 resulted in a transient absorption band centered at ca. 472 nm with a time constant τ ~ 22 ps, which was assigned to the first singlet excited state (S1) of 1. The nano-second flash photolysis of 1 (308 nm laser) generated 2 within the laser pulse (~17 ns), and subsequently 2 is excited to yield triplet vinylnitrene 31N with an absorption centered at ~ 440 nm. In contrast, the nano-second laser flash photolysis of 2 with 266 nm laser produced a weak absorption corresponding to 3, whereas 308 nm laser yielded absorption due to triplet vinylnitrene 31N (λmax ~ 440 nm). These findings demonstrate that the direct irradiation of 1 populates S1 of 1, which does not intersystem cross to form 31N, but instead decays to yield 2. Density functional theory calculations supported the characteristics of the excited states and reactive intermediates formed upon irradiation of 1 and 2. 
    more » « less
  4. Abstract Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10−3 s−1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices. 
    more » « less
  5. ABSTRACT The pursuit of sustainable organic synthesis has renewed interest in photochemistry, as sunlight‐driven reactions provide eco‐friendly alternative methods. Although the relationships among structure, properties, and reactivity are well established for ground‐state molecules, the understanding of excited states and reactive intermediates, such as triplet and singlet arylnitrenes, remains limited. Herein, we investigated the properties of triplet and singlet 4‐nitrenopyridine‐1‐pyridine oxide (1N), 3‐nitrenopyridine‐1‐pyridine oxide (2N), and phenylnitrene (PhN) using density functional theory (DFT), complete active space self‐consistent field (CASSCF(10,9)), and complete active space second‐order perturbation theory (CASPT2(10,9)) calculations. Bond length analysis demonstrated that31Nand11N, as well as12Nand1PhN, exhibit significant imine biradical character, whereas the structures of32Nand3PhNare better described as benzene‐like. Nucleus‐independent chemical shift (NICS(0), NICS(1.7)ZZ) and anisotropy of induced current density (ACID) calculations were performed to compare the induced magnetic currents in these molecules. These analyses demonstrated that31Nis weakly aromatic, whereas32Nand3PhNare best described as having Baird aromaticity. In contrast, singlet nitrenes11N,12N, and1PhNare nonaromatic. In addition, irradiation of1in argon matrices verified that31Nreacts photochemically to form corresponding ketenimine1K. Finally, the absorption difference spectrum of31Nin a frozen 2‐methyltetrahydrofuran (mTHF) matrix exhibited resolved vibrational structure, suggesting the vibrational coupling to another electronic state. These insights into the structure and aromaticity of heterocyclic nitrenes could provide new avenues for modulating the reactivity of triplet ground state and triplet excited molecules. 
    more » « less