Abstract The extent to which interspecific competition structures species interactions and coexistence within communities, and the relevant mechanisms, are still debated. We focus on New World wood warblers (Parulidae), beginning with Robert MacArthur’s iconic 1958 paper in which he shows how subtle foraging behaviors, purportedly linked to dietary differences, within spruce trees contribute to the coexistence of 5 spruce-woods warbler species. MacArthur coined the phrase “resource partitioning”, and profoundly impacted the field of Ecology for subsequent decades in diverse ways. To understand what MacArthur got right and what he missed, we reviewed both ecological and evolutionary approaches to questions of the origin and coexistence of competing species in the context of diet. We argue that an important, underappreciated, mechanism of competition among coexisting migratory warbler species, particularly in winter, is diffuse exploitation competition, based in part on our own studies of warbler diets in relation to foraging behavior, substrate use, bird morphology, and other traits. Our review and synthesis of interspecific competition and coexistence in warblers have important consequences, including our questioning of the importance and effectiveness of resource partitioning in birds. We also suggest a novel hypothesis for the success of warblers today in the Caribbean and other habitats, beginning with their relatively recent adaptive radiation and the ecological opportunity on Caribbean islands.
more »
« less
Temporal resource partitioning mitigates interspecific competition and promotes coexistence among insect parasites
ABSTRACT A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta‐analysis of 64 studies from 41 publications to determine if temporal resource partitioningviavariation in the timing of a key life‐history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life‐history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co‐occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioningviavariation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger‐sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivisionviavariation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.
more »
« less
- Award ID(s):
- 1638997
- PAR ID:
- 10445920
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biological Reviews
- Volume:
- 96
- Issue:
- 5
- ISSN:
- 1464-7931
- Page Range / eLocation ID:
- p. 1969-1988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Species that use the same resources present a paradox for understanding their coexistence. This is especially true for cryptic species because they are phenotypically similar. We examined how competition affects food-resource use in three cryptic species of Hyalella Smith, 1874, a freshwater-amphipod genus. We hypothesized that competitively inferior species would use high-quality algae patches when alone and competitively superior species would displace inferior species to low-quality patches. We compared use of foraging patches varying in algal content (i.e., quality) when species were alone or with another species. Our results showed that the competitively inferior species spent more time on the low-quality patch in the presence of the competitively superior species, but the behavior of the competitively superior species was independent of heterospecifics. This study provides insight into the role of interspecific competition in shaping resource use and patterns of coexistence in nature.more » « less
-
(1) Background: Condition-specific competition, when the outcome of competition varies with abiotic conditions, can facilitate species coexistence in spatially or temporally variable environments. Discarded vehicle tires degrade to leach contaminants into collected rainwater that provide habitats for competing mosquito species. We tested the hypothesis that more highly degraded tires that contain greater tire leachate alters interspecific mosquito competition to produce a condition-specific advantage for the resident, Culex pipiens, by altering the outcome of competition with the competitively superior invasive Aedes albopictus. (2) Methods: In a competition trial, varying densities of newly hatched Ae. albopictus and Cx. pipiens larvae were added to tires that had been exposed to three different ultraviolet (UV)-B conditions that mimicked full-sun, shade, or no UV-B conditions in the field. We also measured Cx. pipiens and Ae. albopictus oviposition preference among four treatments with varying tire leachate (high and low) and resources (high and low) amounts to determine if adult gravid females avoided habitats with higher tire leachate. (3) Results: We found stronger competitive effects of Cx. pipiens on the population performance and survival of Ae. albopictus in tires exposed to shade and full-sun conditions that had higher concentrations of contaminants. Further, zinc concentration was higher in emergent adults of Ae. albopictus than Cx. pipiens. Oviposition by these species was similar between tire leachate treatments but not by resource amount. (4) Conclusions: These results suggest that degraded tires with higher tire leachate may promote condition-specific competition by reducing the competitive advantage of invasive Ae. albopictus over resident Cx. pipiens and, combined with Cx. pipiens’ preferential oviposition in higher resource sites, contribute to the persistence of the resident species.more » « less
-
Abstract A major question in ecology is how often competing species evolve to reduce competitive interactions and facilitate coexistence. One untested route for a reduction in competitive interactions is through ontogenetic changes in the trophic niche of one or more of the interacting species. In such cases, theory predicts that two species can coexist if the weaker competitor changes its resource niche to a greater degree with increased body size than the superior competitor.We tested this prediction using stable isotopes that yield information about the trophic position (δ15N) and carbon source (δ13C) of two coexisting fish species: Trinidadian guppiesPoecilia reticulataand killifishRivulus hartii.We examined fish from locations representing three natural community types: (1) where killifish and guppies live with predators, (2) where killifish and guppies live without predators and (3) where killifish are the only fish species. We also examined killifish from communities in which we had introduced guppies, providing a temporal sequence of the community changes following the transition from a killifish only to a killifish–guppy community.We found that killifish, which are the weaker competitor, had a much larger ontogenetic niche shift in trophic position than guppies in the community where competition is most intense (killifish–guppy only). This result is consistent with theory for size‐structured populations, which predicts that these results should lead to stable coexistence of the two species. Comparisons with other communities containing guppies, killifish and predators and ones where killifish live by themselves revealed that these results are caused primarily by a loss of ontogenetic niche changes in guppies, even though they are the stronger competitor. Comparisons of these natural communities with communities in which guppies were translocated into sites containing only killifish showed that the experimental communities were intermediate between the natural killifish–guppy community and the killifish–guppy–predator community, suggesting contemporary evolution in these ontogenetic trophic differences.These results provide comparative evidence for ontogenetic niche shifts in contributing to species coexistence and comparative and experimental evidence for evolutionary or plastic changes in ontogenetic niche shifts following the formation of new communities.more » « less
-
Abstract Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question.Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency‐dependent population growth, which has a key role stabilizing local competitor coexistence.We conducted field experiments in three lakes manipulating relative frequencies of twoEnallagmadamselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry‐over effects between life stages to decompose the relative effect of each fitness component generating frequency‐dependent population growth.This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes.Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population‐level variation.more » « less
An official website of the United States government
