Large anisotropic deformation affects the physical state of a polymer glass, where the changes in the state of material are revealed by performing a differential scanning calorimetry (DSC) experiment. Previously, the deformation was applied to polymers well below their glass transition temperatures, and it was found that uniaxial compressive loading–unloading resulted in a broad exothermic peak on the DSC trace. Here we report on the effect on the subsequent DSC response of a deformation experiment performed in uniaxial extension on a ductile 50:50 co‐polymer poly(BMA‐
The effects of annealing a glassy polymer at temperatures well below
- NSF-PAR ID:
- 10445979
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Polymer Engineering & Science
- Volume:
- 62
- Issue:
- 2
- ISSN:
- 0032-3888
- Page Range / eLocation ID:
- p. 537-552
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract co ‐MMA) (PBMA/MMA). The deformation of up to 80% strain was applied atT g − 30°C andT g − 40°C, that is, closer toT gthan in the previous work. Unlike in the well belowT gdeformation case, the DSC trace contains an endothermic peak followed by an exothermic peak. The magnitude of the endothermic peak as well as the asymptotic glassy heat capacity increase with the amount of mechanical work performed during the deformation cycle. -
ABSTRACT The isothermal structural relaxation (densification) of a family of glassy polynorbornene films with high glass transition temperatures (
T g > 613 K) is assessed via spectroscopic ellipsometry. Three polymers were examined: poly(butylnorbornene) (BuNB), poly(hydroxyhexafluoroisopropyl norbornene) (HFANB), and their random copolymer, BuNB‐r ‐HFANB. The effective aging rate,β (T ), of thick (∼1.2 μm) spun cast films of BuNB‐r ‐HFANB is approximately 10−3over a wide temperature window (0.49 <T /T g < 0.68). At higher temperatures, these polymers undergo reactions that more dramatically decrease the film thickness, which prohibits erasing the process history by annealing aboveT g. The aging rate for thick BuNB‐r ‐HFANB films is independent of the casting solvent, which infers that rapid aging is not associated with residual solvent.β (at 373 K) decreases for films thinner than ∼500 nm. However, the isothermal structural relaxation of thin films of BuNB‐r ‐HFANB exhibits nonmonotonic temporal evolution in thickness for films thinner than 115 nm film. The thickness after 18 h of aging at 373 K can be greater than the initial thickness. The rapid aging of these polynorbornene films is attributed to the unusual rapid local dynamics of this class of polymers and demonstrates the potential for unexpected structural relaxations in membranes and thin films of high‐T gpolymers that could impact their performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018 ,56 , 53–61 -
Abstract Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3
T mto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureT g. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowT g, where the atomic mobility should be vanishingly small. -
Abstract Rubber toughening of glassy polystyrene (PS) has been manufactured commercially for decades as high impact polystyrene, where rubbery poly‐butadiene (PB) inclusions are added to modify the PS matrix response to deformation and impact. In this study, measurements of the local glass transition temperature
T g(z ) of PS next to PB rubber are presented, expanding the previous data to a polymer with a much lowerT gvalue (PBT gbulk= −96 °C). After accounting for a small molecule additive present in the commercial PB sample that would otherwise migrate over to the PS domain causing plasticization, it is found that theT g(z ) profile in PS next to PB is consistent with previous results. It is also demonstrated that these broad and asymmetric experimentally observedT g(z ) profiles are not caused by the migration of low molecular weight chains across the interface by comparing samples made with two different poly(n ‐butyl methacrylate) molecular weights. -
Abstract A covalent adaptable network (CAN) with high glass transition temperature (
T g), superior mechanical properties including toughness and ductility, and unprecedented spatio‐temporally controlled dynamic behavior is prepared by introducing dynamic moieties capable of reversible addition fragmentation chain transfer (RAFT) into photoinitiated copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC)‐based networks. While the CuAAC polymerization yields glassy polymers composed of rigid triazole linkages with enhanced toughness, the RAFT moieties undergo bond exchange leading to stress relaxation upon light exposure. This unprecedented level of stress relaxation in the glassy state leads to numerous desirable attributes including glassy state photoinduced plasticity, toughness improvement during large deformation, and even photoinduced reversal of the effects of physical aging resulting in the rejuvenation of mechanical and thermodynamic properties in physically aged RAFT‐CuAAC networks that undergo bond exchange in the glassy state. Surprisingly, when an allyl‐sulfide‐containing azide monomer (AS‐N3) is used to form the network, the network exhibits up to 80% stress relaxation in the glassy state (T g − 45 °C) under fixed displacement. In situ activation of RAFT during mechanical loading results in a 50% improvement in elongation to break and 40% improvement in the toughness when compared to the same network without light‐activation of RAFT during the tensile testing.