Abstract Reactive nitrogen (Nr) within smoke plumes plays important roles in the production of ozone, the formation of secondary aerosols, and deposition of fixed N to ecosystems. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign sampled smoke from 23 wildfires throughout the western U.S. during summer 2018 using the NSF/NCAR C‐130 research aircraft. We empirically estimateNrnormalized excess mixing ratios and emission factors from fires sampled within 80 min of estimated emission and explore variability in the dominant forms ofNrbetween these fires. We find that reduced N compounds comprise a majority (39%–80%; median = 66%) of total measured reactive nitrogen (ΣNr) emissions. The smoke plumes sampled during WE‐CAN feature rapid chemical transformations after emission. As a result, within minutes after emission total measured oxidized nitrogen (ΣNOy) and measured totalΣNHx(NH3 + pNH4) are more robustly correlated with modified combustion efficiency (MCE) than NOxand NH3by themselves. The ratio of ΣNHx/ΣNOydisplays a negative relationship with MCE, consistent with previous studies. A positive relationship with total measuredΣNrsuggests that both burn conditions and fuel N content/volatilization differences contribute to the observed variability in the distribution of reduced and oxidizedNr. Additionally, we compare our in situ field estimates ofNrEFs to previous lab and field studies. For similar fuel types, we findΣNHxEFs are of the same magnitude or larger than lab‐based NH3EF estimates, andΣNOyEFs are smaller than lab NOxEFs.
more »
« less
Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes
Abstract The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) deployed the NSF/NCAR C‐130 aircraft in summer 2018 across the western U.S. to sample wildfire smoke during its first days of atmospheric evolution. We present a summary of a subset of reactive oxidized nitrogen species (NOy) in plumes sampled in a pseudo‐Lagrangian fashion. Emissions of nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO) are rapidly converted to more oxidized forms. Within 4 h, ∼86% of the ΣNOyis in the form of peroxy acyl nitrates (PANs) (∼37%), particulate nitrate (pNO3) (∼27%), and gas‐phase organic nitrates (Org N(g)) (∼23%). The averagee‐folding time and distance for NOxare ∼90 min and ∼40 km, respectively. Nearly no enhancements in nitric acid (HNO3) were observed in plumes sampled in a pseudo‐Lagrangian fashion, implying HNO3‐limited ammonium nitrate (NH4NO3) formation, with one notable exception that we highlight as a case study. We also summarize the observed partitioning of NOyin all the smoke samples intercepted during WE‐CAN. In smoke samples intercepted above 3 km above sea level (ASL), the contributions of PANs andpNO3to ΣNOyincrease with altitude. WE‐CAN also sampled smoke from multiple fires mixed with anthropogenic emissions over the California Central Valley. We distinguish samples where anthropogenic NOxemissions appear to lead to an increase in NOxabundances by a factor of four and contribute to additional PAN formation.
more »
« less
- PAR ID:
- 10445998
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 4
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wildfires are a major source of gas‐phase ammonia (NH3) to the atmosphere. Quantifying the evolution and fate of this NH3is important to understanding the formation of secondary aerosol in smoke and its accompanying effects on radiative balance and nitrogen deposition. Here, we use data from the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) to add new empirical constraints on the e‐folding loss timescale of NH3and its relationship with particulate ammonium (pNH4) within wildfire smoke plumes in the western U.S. during summer 2018. We show that the e‐folding loss timescale of NH3with respect to particle‐phase partitioning ranges from ∼24 to ∼4000 min (median of 55 min). Within these same plumes, oxidation of nitrogen oxides is observed concurrent with increases in the fraction ofpNH4in each plume sampled, suggesting that formation of ammonium nitrate (NH4NO3) is likely. We find wide variability in how close ourin situmeasurements of NH4NO3are to those expected in a dry thermodynamic equilibrium, and find that NH4NO3is most likely to form in fresh, dense smoke plumes injected at higher altitudes and colder temperatures. In chemically older smoke we observe correlations between both the fraction ofpNH4and the fraction of particulate nitrate (pNO3) in the aerosol with temperature, providing additional evidence of the presence of NH4NO3and the influence of injection height on gas‐particle partitioning of NH3.more » « less
-
Quantifying the variable impacts of wildfire smoke on ozone air quality is challenging. Here we use airborne measurements from the 2018 Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) to parameterize emissions of reactive nitrogen (NOy) from wildfires into peroxyacetyl nitrate (PAN; 37%), NO3− (27%), and NO (36%) in a global chemistry-climate model with 13 km spatial resolution over the contiguous US. The NOy partitioning, compared with emitting all NOy as NO, reduces model ozone bias in near-fire smoke plumes sampled by the aircraft and enhances ozone downwind by 5–10 ppbv when Canadian smoke plumes travel to Washington, Utah, Colorado, and Texas. Using multi-platform observations, we identify the smoke-influenced days with daily maximum 8-hr average (MDA8) ozone of 70–88 ppbv in Kennewick, Salt Lake City, Denver and Dallas. On these days, wildfire smoke enhanced MDA8 ozone by 5–25 ppbv, through ozone produced remotely during plume transport and locally via interactions of smoke plume with urban emissions.more » « less
-
Despite decades of progress in reducing nitrogen oxide (NOx) emissions, ammonium nitrate (AN) remains the primary inorganic component of particulate matter (PM) in Los Angeles (LA). Using aerosol mass spectrometry over multiple years in LA illustrates the controlling dynamics of AN and their evolution over the past decades. These data suggest that much of the nitric acid (HNO3) production required to produce AN in LA occurs during the nighttime via heterogeneous hydrolysis of N2O5. Further, we show that US Environmental Protection Agency–codified techniques for measuring total PM2.5fail to quantify the AN component, while low-cost optical sensors demonstrate good agreement. While previous studies suggest that declining NOxhas reduced AN, we show that HNO3formation is still substantial and leads to the formation of many tens of micrograms per cubic meter of AN aerosol. Continued focus on reductions in NOxwill help meet the PM2.5standards in the LA basin and many other regions.more » « less
-
Abstract Long‐term declines in concentrations of fine particulate matter (PM2.5) in the United States (U.S.) have been disrupted in recent years, with recent trends stagnating or reversing. In this study, we analyze surface observations of PM2.5composition from 2002 to 2022 to identify the chemical components driving this shift. We find that PM2.5concentrations plateau across seasons and regions in the contiguous U.S. since 2016, even after excluding estimated wildfire impacts, suggesting that the rise in wildfire activity alone does not account for these trends. The stagnation is primarily driven by a slowdown in the reduction of sulfate and a non‐significant increase in organic aerosols. In the Eastern and Central U.S., sulfate concentrations generally mirror decreasing anthropogenic SO2emissions, except in winter, where chemical feedbacks related to oxidant limitations weaken the response of sulfate. We find that nitrate and NO2concentrations decrease slower than anthropogenic nitrogen oxides (NOx) emissions, particularly in fall and winter, suggesting a potential overestimate in the decrease of NOxemissions in the U.S. Environmental Protection Agency National Emission Inventory (NEI) and/or an increasing role of natural and non‐U.S. sources. In the Southeast, the decline in organic aerosol concentrations has stalled since 2015, possibly due to weaker decreases in sulfate‐induced secondary organic aerosol (SOA) formation from isoprene, combined with increases in monoterpene‐derived SOA as the climate warms. Despite continued decreases in the NEI black carbon (BC) emissions, BC concentrations have stagnated since 2015, even after removing the estimated influence of wildfire smoke, indicating a possible underestimate in emissions.more » « less
An official website of the United States government
