skip to main content


Title: High‐Resolution Ps Receiver Function Imaging of the Crust and Mantle Lithosphere Beneath Southern New England and Tectonic Implications
Abstract

Southern New England exhibits diverse geologic features resulting from past tectonic events. These include Proterozoic and early Paleozoic Laurentian units in the west, several Gondwana‐derived terranes that accreted during the Paleozoic in the east, and the Mesozoic Hartford Basin in the central part of the region. The Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn) project involved the deployment of a dense array of 15 broadband seismometers across northern Connecticut to investigate the architecture of lithospheric structures beneath this region and interpret how they were created and modified by past tectonic events in the context of surface geology. We carried out P‐to‐S receiver function analysis on SEISConn data, including both single‐station analysis and common conversion point (CCP) stacking. Our images show that the westernmost part of Connecticut has a much deeper Moho than central and eastern Connecticut. The lateral transition is a well‐defined, ∼15 km step‐like offset of the Moho over a ∼20 km horizontal distance. The Moho step appears near the surface boundary between the Laurentian margin and the Gondwana‐derived Moretown terrane. Possible models for its formation include Ordovician underthrusting of Laurentia and/or modification by younger tectonic events. Other prominent features include a strong positive velocity gradient (PVG) beneath the Hartford basin corresponding to the bottom of the sedimentary units, several west‐dipping PVGs in the crust and mantle lithosphere that may correspond to relict slabs or shear zones from past subduction episodes, and a negative velocity gradient (NVG) that may correspond to the base of the lithosphere.

 
more » « less
Award ID(s):
1800923
NSF-PAR ID:
10446006
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
7
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The eastern margin of North America has been affected by a range of fundamental tectonic processes in the geologic past. Major events include the Paleozoic Appalachian orogeny, which culminated in the formation of the supercontinent Pangea, and the breakup of Pangea during the Mesozoic. The southern New England Appalachians exhibit a particularly rich set of geologic and tectonic structures that reflect multiple episodes of subduction and terrane accretion, as well as subsequent continental breakup. It remains poorly known, however, to what extent structures at depth in the crust and lithospheric mantle reflect these processes, and how they relate to the geological architecture at the surface. The Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn) was a deployment of 15 broadband seismometers in a dense linear array across northern Connecticut. The array traversed a number of major tectonic boundaries, sampling across the Laurentian margin in its western portion to the Avalonian terrane at its eastern end. It also crossed the Hartford rift basin in the central portion of the state. The SEISConn stations operated between 2015 and 2019; data from the experiment are archived at the Incorporated Research Institutions for Seismology Data Management Center and will be publicly available beginning in 2021. A suite of imaging techniques is being applied to SEISConn data, with the goal of providing a detailed view of the crust and mantle lithosphere (including discontinuities, seismic velocities, and seismic anisotropy) beneath the southern New England Appalachians. Results from these analyses will inform a host of fundamental scientific questions about the structural evolution of orogens, the processes involved in continental rifting, and the nature of crustal and mantle lithospheric deformation during subduction, terrane accretion, and continental breakup. 
    more » « less
  2. Abstract In this study, we use data from the SEISConn seismic experiment to calculate Sp receiver functions in order to characterize the geometry of upper-mantle structure beneath southern New England (northeastern United States). We image robust negative-velocity-gradient discontinuities beneath southern New England that we interpret as corresponding to the lithosphere-asthenosphere boundary (LAB) and identify a well-defined step of 15 km in LAB depth at a longitude of 73°W, which we interpret to be the boundary between Laurentian and Appalachian lithosphere, although the offset may be larger if the putative LAB phase is reinterpreted to be a mid-lithospheric discontinuity. We infer that the lithosphere throughout the region is substantially thinner than elsewhere in the continental interior, consistent with regional tomographic studies and previously published Sp receiver function results. The presence of thinned lithosphere suggests that the low-velocity Northern Appalachian Anomaly (NAA) in the upper mantle may extend as far south as coastal Connecticut. The presence of regionally thinned lithosphere and a step in lithospheric thickness suggests that inherited structure may be preserved in present-day lithosphere, even in the presence of more recent dynamic processes associated with the NAA. 
    more » « less
  3. Abstract

    The crust and upper mantle beneath the New England Appalachians exhibit a large offset of the Moho across the boundary between Laurentia and accreted terranes and several dipping discontinuities, which reflect Paleozoic or younger tectonic movements. We apply scattered wavefield migration to the SEISConn array deployed across northern Connecticut and obtain insights not previously available from receiver function studies. We resolve a doubled Moho at a previously imaged Moho offset, which may reflect westward thrusting of rifted Grenville crust. The migration image suggests laterally variable velocity contrasts across the Moho, perhaps reflecting mafic underplating during continental rifting. A west‐dipping feature in the lithospheric mantle is further constrained to have a slab‐like geometry, representing a relict slab subducted during an Appalachian orogenic event. Localized low seismic velocities in the upper mantle beneath the eastern portion of the array may indicate that the Northern Appalachian Anomaly extends relatively far to the south.

     
    more » « less
  4. Abstract

    Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.

     
    more » « less
  5. Abstract

    The impact of past tectonic events on the formation and modification of continental lithosphere remains as an open question of fundamental importance. Eastern North America provides a complete record of supercontinent assembly and breakup over the past 1.3 Ga, serving as a natural laboratory for our understanding of continental crust and mantle lithosphere and for integrating geologic and geophysical observations. In this study, we used teleseismic Ps receiver functions to image the detailed distribution of crustal thickness beneath eastern North America. The radial‐component receiver functions were calculated from seismic waveforms recorded by a total of 659 broadband stations during 2010–2017, yielding a high‐resolution image of Moho depth distribution. The depths of the Moho and intracrustal layers vary within and across the major tectonic units. Specifically, there are distinct differences in crustal thickness between the northern and southern Grenville Province. A dipping intracrustal feature can be seen within the central Grenville Province, with the depth increasing eastward from 5 to 27 km. The Moho depth decreases southeastward across the Grenville‐Appalachian boundary, with a sharp Moho offset of up to 12–15 km in the central segment and a more gradual variation to the north and south. The thickness difference between the southern and northern Grenville‐aged crusts suggests different tectonic and/or exhumation histories during and after the Grenville Orogeny. The low‐angle eastward dipping crustal feature is interpreted to be a Grenville‐aged collisional structure. Differences in the steepness of the Moho offset along the strike of Appalachians probably reflect variation of the steepness of the subsurface boundary between Laurentia and accreted terranes with different intensities of postorogenic modification. The observed spatial relation between the geologically defined tectonic boundaries and crustal thickness variations provides new constraints on the depth extent of the tectonic units within the crust.

     
    more » « less