skip to main content


Title: Temporal scale of habitat selection for large carnivores: Balancing energetics, risk and finding prey
Abstract

When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited.

Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions.

We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lionsPanthera leoin Laikipia, Kenya and pumasPuma concolorin the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk.

For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk.

Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.

 
more » « less
PAR ID:
10446035
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
91
Issue:
1
ISSN:
0021-8790
Page Range / eLocation ID:
p. 182-195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conserving large carnivores requires protecting landscape spaces that encompass all spatiotemporal scales of their movement. Large carnivores normally roam widely, but habitat loss and fragmentation can constrain their movement in ways that restrict access to resources and increase encounters with humans and potential conflict. Facilitating carnivore population coexistence with humans across landscapes requires conservation plans informed by patterns of carnivore space use, particularly at the human–wildlife interface.

    We sought to understand lion space use in Laikipia, Kenya. We conducted a path‐selection function analysis using GPS collar data from 16 lions to assess patterns of space use across a range of spatial scales (sedentary to home range expanses; 0, 12.5, 25 and 50 km) and temporal scales (day, dusk, night and dawn). Path‐selection results were then incorporated into space use maps.

    We found that most landscape features influenced path‐selection at the broadest spatial scale (50 km), representative of home range‐wide movement, thereby demonstrating a landscape‐wide human impact on lion space use. We also detected sub‐diurnal variation in lion path‐selection which revealed limited space use during daylight hours and increased space use overnight.

    Our results highlight that optimal support for human–lion coexistence should be temporally adaptive at sub‐diurnal scales. Furthermore, spatial approaches to lion conservation may be better generalized at broad spatial scales so that land management plans can account for home range patterns in lion space use.

     
    more » « less
  2. Abstract

    Spatiotemporal variation in predation risk arises from interactions between landscape heterogeneity, predator densities and predator hunting mode, generating landscapes of fear for prey species that can have important effects on prey behaviour and ecosystem dynamics.

    As widespread apex predators, humans present a significant source of risk for hunted animal populations. Spatiotemporal patterns of risk from hunters can overlap or contrast with patterns of risk from other predators. Human infrastructure can also reshape spatial patterns of risk by facilitating or impeding hunter or predator movement, or deterring predators that are themselves wary of humans.

    We examined how anthropogenic and natural landscape features interact with hunting modes of rifle hunters and mountain lionsPuma concolorto generate spatiotemporal patterns of risk for their primary prey. We explored the implications of human‐modified landscapes of fear for Columbian black‐tailed deerOdocoileus hemionus columbianusin Mendocino County, California. We used historical harvest records, hunter GPS trackers and camera trap records of mountain lions to model patterns of risk for deer. We then used camera traps to examine deer spatial and temporal activity patterns in response to this variation in risk.

    Hunters and mountain lions exhibited distinct, contrasting patterns of spatiotemporal activity. Risk from rifle hunters, who rely on long lines of sight, was highest in open grasslands and near roads and was confined to the daytime. Risk from mountain lions, an ambush predator, was highest in dense shrubland habitat, farther from developed areas, and during the night and crepuscular periods. Areas of human settlement provided a refuge from both hunters and mountain lions. We found no evidence that deer avoided risk in space at the scale of our observations, but deer adjusted their temporal activity patterns to reduce the risk of encounters with humans and mountain lions in areas of higher risk.

    Our study demonstrates that interactions between human infrastructure, habitat cover and predator hunting mode can result in distinct spatial patterns of predation risk from hunters and other predators that may lead to trade‐offs for prey species. However, distinct diel activity patterns of predators may create vacant hunting domains that reduce costly trade‐offs for prey. Our study highlights the importance of temporal partitioning as a mechanism of predation risk avoidance.

     
    more » « less
  3. Abstract

    Rigorous understanding of how environmental conditions impact population dynamics is essential for species conservation, especially in mixed‐use landscapes where source–sink dynamics may be at play. Conservation of large carnivore populations in fragmented, human‐dominated landscapes is critical for their long‐term persistence. However, living in human‐dominated landscapes comes with myriad costs, including direct anthropogenic mortality and sublethal energetic costs. How these costs impact individual fitness and population dynamics are not fully understood, partly due to the difficulty in collecting long‐term demographic data for these species. Here, we analyzed an 11‐year dataset on puma (Puma concolor) space use, mortality, and reproduction in the Santa Cruz Mountains, California, USA, to quantify how living in a fragmented landscape impacts individual survival and population dynamics. Long‐term exposure to housing density drove mortality risk for female pumas, resulting in an 18‐percentage‐point reduction in annual survival for females in exurban versus remote areas. While the overall population growth rate appeared stable, reduced female survival in more developed areas resulted in source–sink dynamics across the study area, with 42.1% of the Santa Cruz Mountains exhibiting estimated population growth rates <1. Since habitat selection is often used as a proxy for habitat quality, we also assessed whether puma habitat selection predicted source and sink areas. Patterns of daytime puma habitat selection predicted source areas, while time‐of‐day‐independent habitat selection performed less well as a proxy. These results illuminate the individual‐ and population‐level consequences of habitat fragmentation for large carnivores, illustrating that habitat fragmentation can produce source–sink dynamics that may not be apparent from other metrics of habitat quality. Locally, conserving high‐quality source habitat within the Santa Cruz Mountains is necessary to support long‐term puma population persistence. More broadly, source–sink dynamics may at play for other carnivore populations in similar fragmented systems, and linking landscape conditions to population dynamics is essential for effective conservation. Caution should be used in inferring habitat quality from habitat selection alone, but these results shed light on metrics of selection that may be better or worse proxies to identify source areas for large carnivores.

     
    more » « less
  4. Abstract Background Prey depletion is a threat to the world’s large carnivores, and is likely to affect subordinate competitors within the large carnivore guild disproportionately. African lions limit African wild dog populations through interference competition and intraguild predation. When lion density is reduced as a result of prey depletion, wild dogs are not competitively released, and their population density remains low. Research examining distributions has demonstrated spatial avoidance of lions by wild dogs, but the effects of lions on patterns of movement have not been tested. Movement is one of the most energetically costly activities for many species and is particularly costly for cursorial hunters like wild dogs. Therefore, testing how top-down, bottom-up, and anthropogenic variables affect movement patterns can provide insight into mechanisms that limit wild dogs (and other subordinate competitors) in resource-depleted ecosystems. Methods We measured movement rates using the motion variance from dynamic Brownian Bridge Movement Models (dBBMMs) fit to data from GPS-collared wild dogs, then used a generalized linear model to test for effects on movement of predation risk from lions, predictors of prey density, and anthropogenic and seasonal variables. Results Wild dogs proactively reduced movement in areas with high lion density, but reactively increased movement when lions were immediately nearby. Predictors of prey density had consistently weaker effects on movement than lions did, but movements were reduced in the wet season and when dependent offspring were present. Conclusion Wild dogs alter their patterns of movement in response to lions in ways that are likely to have important energetic consequences. Our results support the recent suggestion that competitive limitation of wild dogs by lions remains strong in ecosystems where lion and wild dog densities are both low as a result of anthropogenic prey depletion. Our results reinforce an emerging pattern that movements often show contrasting responses to long-term and short-term variation in predation risk. 
    more » « less
  5. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less