skip to main content


Title: Shadow Geometry of Kerr Naked Singularities
Abstract

Direct imaging of supermassive black holes (SMBHs) at event horizon-scale resolutions, as recently done by the Event Horizon Telescope, allows for testing alternative models to SMBHs such as Kerr naked singularities (KNSs). We demonstrate that the KNS shadow can be closed, open, or vanishing, depending on the spins and observational inclination angles. We study the critical parameters where the KNS shadow opens a gap, a distinctive phenomenon that does not happen with the black hole shadow. We show that the KNS shadow can only be closed for dimensionless spina≲ 1.18 and vanishing fora≳ 1.18 for certain ranges of inclination angles. We further analyze the effective angular momentum of photon orbits to demonstrate the fundamental connections between light geodesics and the KNS shadow geometry. We also perform numerical general relativistic ray-tracing calculations, which reproduce the analytical topological change in the KNS shadow, and illustrate other observational features within the shadow due to the lack of an event horizon. By comparing the geometric features of the KNS shadow with black hole shadow observations, the topological change in the shadow of KNSs can be used to test the cosmic censorship hypothesis and KNSs as alternative models to SMBHs.

 
more » « less
Award ID(s):
2034306
NSF-PAR ID:
10446059
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 78
Size(s):
["Article No. 78"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ∼0.1μas resolution and ∼1μJy sensitivity could access >106SMBH shadows. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Accessing the bulk population of first-order photon rings requires ≲2μas resolution and ≲0.5 mJy sensitivity, whereas doing the same for second-order photon rings requires ≲0.1μas resolution and ≲5μJy sensitivity. Our model predicts that with modest improvements to sensitivity, as many as ∼5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-generation EHT observing at 345 GHz should have access to ∼3 times as many sources. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.

     
    more » « less
  2. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images. 
    more » « less
  3. Abstract

    The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions.

     
    more » « less
  4. Context. High-frequency very-long-baseline interferometry (VLBI) observations can now resolve the event-horizon-scale emission from sources in the immediate vicinity of nearby supermassive black holes. Future space-VLBI observations will access highly lensed features of black hole images – photon rings – that will provide particularly sharp probes of strong-field gravity. Aims. Focusing on the particular case of the supermassive black hole M 87*, our goal is to explore a wide variety of accretion flows onto a Kerr black hole and to understand their corresponding images and visibilities. We are particularly interested in the visibility on baselines to space, which encodes the photon ring shape and whose measurement could provide a stringent test of the Kerr hypothesis. Methods. We developed a fully analytical model of stationary, axisymmetric accretion flows with a variable disk thickness and a matter four-velocity that can smoothly interpolate between purely azimuthal rotation and purely radial infall. To determine the observational appearance of such flows, we numerically integrated the general-relativistic radiative transfer equation in the Kerr spacetime, taking care to include the effects of thermal synchrotron emission and absorption. We then Fourier transformed the resulting images and analyzed their visibility amplitudes along the directions parallel and orthogonal to the black hole spin projected on the observer sky. Results. Our images generically display a wedding cake structure composed of discrete, narrow photon rings ( n  = 1, 2, …) stacked on top of broader primary emission that surrounds a central brightness depression of model-dependent size. At 230 GHz, the n  = 1 ring is always visible, but the n  = 2 ring is sometimes suppressed due to absorption. At 345 GHz, the medium is optically thinner and the n  = 2 ring displays clear signatures in both the image and visibility domains. We also examine the thermal synchrotron emissivity in the equatorial plane and show that it exhibits an exponential dependence on the radius for the preferred M 87* parameters. Conclusions. The black hole shadow is a model-dependent phenomenon – even for diffuse, optically thin sources – and should not be regarded as a generic prediction of general relativity. Observations at 345 GHz are promising for future space-VLBI measurements of the photon ring shape, since at this frequency the signal of the n  = 2 ring persists despite the disk thickness and nonzero absorption featured in our models. Future work is needed to investigate whether this conclusion holds in a larger variety of reasonable models. 
    more » « less
  5. We present estimates for the number of supermassive black holes (SMBHs) for which the next-generation Event Horizon Telescope (ngEHT) can identify the black hole “shadow”, along with estimates for how many black hole masses and spins the ngEHT can expect to constrain using measurements of horizon-resolved emission structure. Building on prior theoretical studies of SMBH accretion flows and analyses carried out by the Event Horizon Telescope (EHT) collaboration, we construct a simple geometric model for the polarized emission structure around a black hole, and we associate parameters of this model with the three physical quantities of interest. We generate a large number of realistic synthetic ngEHT datasets across different assumed source sizes and flux densities, and we estimate the precision with which our defined proxies for physical parameters could be measured from these datasets. Under April weather conditions and using an observing frequency of 230 GHz, we predict that a “Phase 1” ngEHT can potentially measure ∼50 black hole masses, ∼30 black hole spins, and ∼7 black hole shadows across the entire sky. 
    more » « less