skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Shadow Geometry of Kerr Naked Singularities
Abstract Direct imaging of supermassive black holes (SMBHs) at event horizon-scale resolutions, as recently done by the Event Horizon Telescope, allows for testing alternative models to SMBHs such as Kerr naked singularities (KNSs). We demonstrate that the KNS shadow can be closed, open, or vanishing, depending on the spins and observational inclination angles. We study the critical parameters where the KNS shadow opens a gap, a distinctive phenomenon that does not happen with the black hole shadow. We show that the KNS shadow can only be closed for dimensionless spina≲ 1.18 and vanishing fora≳ 1.18 for certain ranges of inclination angles. We further analyze the effective angular momentum of photon orbits to demonstrate the fundamental connections between light geodesics and the KNS shadow geometry. We also perform numerical general relativistic ray-tracing calculations, which reproduce the analytical topological change in the KNS shadow, and illustrate other observational features within the shadow due to the lack of an event horizon. By comparing the geometric features of the KNS shadow with black hole shadow observations, the topological change in the shadow of KNSs can be used to test the cosmic censorship hypothesis and KNSs as alternative models to SMBHs.  more » « less
Award ID(s):
2034306
PAR ID:
10446059
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 78
Size(s):
Article No. 78
Sponsoring Org:
National Science Foundation
More Like this
  1. We present estimates for the number of supermassive black holes (SMBHs) for which the next-generation Event Horizon Telescope (ngEHT) can identify the black hole “shadow”, along with estimates for how many black hole masses and spins the ngEHT can expect to constrain using measurements of horizon-resolved emission structure. Building on prior theoretical studies of SMBH accretion flows and analyses carried out by the Event Horizon Telescope (EHT) collaboration, we construct a simple geometric model for the polarized emission structure around a black hole, and we associate parameters of this model with the three physical quantities of interest. We generate a large number of realistic synthetic ngEHT datasets across different assumed source sizes and flux densities, and we estimate the precision with which our defined proxies for physical parameters could be measured from these datasets. Under April weather conditions and using an observing frequency of 230 GHz, we predict that a “Phase 1” ngEHT can potentially measure ∼50 black hole masses, ∼30 black hole spins, and ∼7 black hole shadows across the entire sky. 
    more » « less
  2. Abstract We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ∼0.1μas resolution and ∼1μJy sensitivity could access >106SMBH shadows. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Accessing the bulk population of first-order photon rings requires ≲2μas resolution and ≲0.5 mJy sensitivity, whereas doing the same for second-order photon rings requires ≲0.1μas resolution and ≲5μJy sensitivity. Our model predicts that with modest improvements to sensitivity, as many as ∼5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-generation EHT observing at 345 GHz should have access to ∼3 times as many sources. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings. 
    more » « less
  3. In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super- massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein’s theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents — and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime. 
    more » « less
  4. Abstract The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions. 
    more » « less
  5. Context.The concept of a new space very long baseline interferometry (SVLBI) system named the Event Horizon Imager (EHI) has been proposed to dramatically improve black hole imaging and provide precise tests of the theory of general relativity. Aims.This paper presents imaging simulations for the EHI. We investigate the ability to make high-resolution movies of the black hole shadow and jet launching region around the supermassive black hole M87* and other black hole jets with a three-satellite EHI configuration. We aim to identify orbital configurations to optimize theuυ-coverage to image variable sources. Methods.Observations of general relativistic magnetohydrodynamics (GRMHD) models were simulated for the configuration, consisting of three satellites in circular medium earth orbits with an orbital plane perpendicular to the line of sight. The expected noise was based on preliminary system parameters. Movie frames, for which a part of theuυ-coverage may be excessively sparse, were reconstructed with algorithms that recover missing information from other frames. Averaging visibilities accumulated over multiple epochs of observations with an appropriate orbital configuration then improves the image quality. With an enhanced signal-to-noise ratio, timescales of observed variability were decreased. Results.Our simulations show that the EHI with standard system parameters is capable of imaging the variability in the M87* environment on event horizon scales with approximately a month-long temporal resolution. The EHI with more optimistic noise parameters (enhancing the signal-to-noise ratio about 100-fold) would allow for imaging of the variability on gravitational timescales. Observations with an EHI setup at lower frequencies are capable of imaging the variability in extended jets. Conclusions.Our study shows that the EHI concept can be used to image the variability in a black hole environment and extended jets, allowing for stronger tests of gravity theories and models of black hole accretion, plasma dynamics, and jet launching. 
    more » « less