skip to main content

Title: CeO 2 Doping of Hf 0.5 Zr 0.5 O 2 Thin Films for High Endurance Ferroelectric Memories

Ferroelectric switching is demonstrated in CeO2‐doped Hf0.5Zr0.5O2(HZCO) thin films with application in back‐end‐of‐line compatible embedded memories. At low cerium oxide doping concentrations (2.0–5.6 mol%), the ferroelectric orthorhombic phase is stabilized after annealing at temperatures below 400 °C. HZCO ferroelectrics show reliable switching characteristics beyond 1011cycles in TiN/HZCO/TiN capacitors, several orders of magnitude greater than identically processed Hf0.5Zr0.5O2(HZO) capacitors, without sacrificing polarization and retention. Internal photoemission and photoconductivity experiments show that CeO2‐doping introduces in‐gap states in HZCO that are nearly aligned with TiN Fermi level, facilitating electron injection through these states. The enhanced average bulk conduction, which may lead to more uniform thermal dissipation in the HZCO films, delays irreversible degradation via breakdown that leads to device failure after repeated programming cycles.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
    more » « less
  2. Abstract

    As an emerging nonvolatile memory technology, HfO2‐based ferroelectrics exhibit excellent compatibility with silicon CMOS process flows; however, the reliability of polarization switching in these materials remains a major challenge. During repeated field programming and erase of the polarization state of initially pristine HfO2‐based ferroelectric capacitors, the magnitude of the measured polarization increases, a phenomenon known as “wake‐up”. In this study, the authors attempt to understand what causes the wake‐up effect in Hf0.5Zr0.5O2(HZO) capacitors using nondestructive methods that probe statistically significant sample volumes. Synchrotron X‐ray diffraction reveals a concerted shift in HZO Bragg peak position as a function of polarization switching cycle number in films prepared under conditions such that they exhibit extremely large (≈3000%) wake‐up. In contrast, a control sample with insignificant wake‐up shows no such peak shift. Capacitance – voltage measurements show evolution in the capacitance loop with switching cycle number for the wake‐up sample and no change for the control sample. Piezoresponse force microscopy measurements are utilized to visualize the domain switching with wake‐up. The combination of these observations clearly demonstrates that wake‐up is caused by a field‐driven phase transformation of the tetragonal phase to the metastable ferroelectric orthorhombic phase during polarization switching of HZO capacitors.

    more » « less
  3. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less
  4. Hf0.5Zr0.5O2‐based materials have garnered significant attention for applications requiring ferroelectricity at the nanoscale. This behavior arises due to the stabilization of metastable phases at room temperature. However, the synthesis of phase pure Hf0.5Zr0.5O2remains a challenging problem in both thin films and nanoparticles. Herein, the crystallization of Hf0.5Zr0.5O2nanoparticles from an as‐synthesized amorphous phase is studied. By tailoring the aggregate nature of the intermediate amorphous nanoparticles via different drying processes, the crystallization pathway can be altered, resulting in significant differences in crystal structure, crystallite size, and crystallite morphology after calcination. X‐ray diffraction (XRD) and Rietveld refinement show the dominant crystallographic phase changes from a monoclinic structure to a cubic structure for samples with decreased aggregation. Samples prepared via freeze drying exhibit the most aggregation control and correspond with the observation of single‐crystalline particle aggregates and branching structures attributed to a crystallization by particle attachment mechanism. Herein, differing crystallization pathways lead to unique crystal morphologies that stabilize the traditionally high‐temperature phases of Hf0.5Zr0.5O2‐based materials that are necessary for functional applications.

    more » « less
  5. Abstract

    Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.

    more » « less