skip to main content

Title: Hair phenotype diversity across Indriidae lemurs
Abstract Objectives

Hair (i.e., pelage/fur) is a salient feature of primate (including human) diversity and evolution—serving functions tied to thermoregulation, protection, camouflage, and signaling—but wild primate pelage evolution remains relatively understudied. Specifically, assessing multiple hypotheses across distinct phylogenetic scales is essential but is rarely conducted. We examine whole body hair color and density variation across Indriidae (Avahi,Indri,Propithecus)—a lineage that, like humans, exhibits vertical posture (i.e., their whole bodies are vertical to the sun).

Materials and methods

Our analyses consider multiple phylogenetic scales (family‐level, genus‐level) and hypotheses (e.g., Gloger's rule, the body cooling hypotheses). We obtain hair color and density from museum and/or wild animals, opsin genotypes from wild animals, and climate data from WorldClim. To analyze our data, we use phylogenetic generalized linear mixed models (PGLMM) using Markov chain Monte Carlo algorithms.


Our results show that across the Indriidae family, darker hair is typical in wetter regions. However, withinPropithecus, dark black hair is common in colder forest regions. Results also show pelage redness increases in populations exhibiting enhanced color vision. Lastly, we find follicle density on the crown and limbs increases in dry and open environments.


This study highlights how different selective pressures across distinct phylogenetic scales have likely acted on primate hair evolution. Specifically, our data acrossPropithecusmay implicate thermoregulation and is the first empirical evidence of Bogert's rule in mammals. Our study also provides rare empirical evidence supporting an early hypothesis on hominin hair evolution.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
Page Range / eLocation ID:
p. 257-272
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Mildred Trotter was an anatomist and physical anthropologist whose studies on hair morphology, growth, somatic distribution, and trait relationships to age and ethnogeographic population were foundational to the field of microscopical hair analysis. The collection of human hair samples she assembled for her research has been an underutilized resource for studies on human hair variation. We applied updated methods and reviewed Trotter's original data to reassess the relationship hair traits have to diverse population labels.


    Hair form and pigmentation patterns were measured from a subset of the hair samples accumulated by Trotter and we compared our data to Trotter's original results. Variability in hair traits were tested within individuals, within populations, and among ethnogeographic groups.


    Measured hair cross‐section dimensions and melanosome density and distribution revealed substantial variability within individuals and ethnogeographic populations. Hair traits were found to not be distinctly separable by ancestry but instead showed continuous variation across human populations. Trotter's measurements were precise and the dataset she compiled remains valid, though the conclusions should be reviewed in light of our current understanding of human variation.


    Our findings support moving away from categorical ancestry classifications and eliminating the use of outdated racial typologies in favor of more descriptive trait analysis. Detailed analysis of trait pattern distributions are presented that may be useful for future research on human variation. We point to the need for additional research on human variation and hair trait relationships with reference to known population affinity.

    more » « less
  2. Societal Impact Statement

    Fleshy fruits provide humans with many flavorful and nutritious crops. Understanding the diversity of these plants is fundamental to managing agriculture and food security in a changing world. This study surveyed fruit trait variation across species of tomato wild relatives and explored associations among color, size, shape, sugars, and acids. These wild tomato species native to South America can be interbred with the economically important cultivated tomato. Beyond its application to tomatoes, deepening our knowledge of how fruit traits evolve together is valuable to crop improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.


    Fleshy fruits display a striking diversity of traits, many of which are important for agriculture. The evolutionary drivers of this variation are not well understood, and most studies have relied on variation found in the wild. Few studies have explored this question on a fine‐grained scale with a group of recently diverged species while controlling for environmental effects.

    We developed the tomato clade as a novel system for fruit trait evolution research by presenting the first common garden‐based systematic survey of variation and phylogenetic signal in color, nutrition, and morphology traits across all 13 species of tomato wild relatives (Solanum sect.Lycopersicon). We laid the groundwork for further testing of potential evolutionary drivers by assessing patterns of clustering and correlation among disperser‐relevant fruit traits as well as historical climate variables.

    We found evidence of two distinct clusters of associated fruit traits defined by color, sugar type, and malic acid concentration. We also observed correlations between a fruit's external appearance and internal nutrient content that could function as honest signals to dispersers. Analyses of historical climate and soil variables revealed an association between red/orange/yellow fruits and high annual average temperature.

    Our results establish the tomato clade as a promising system for testing hypotheses on the drivers of divergence behind early‐stage fleshy fruit evolution, particularly selective pressure from frugivores.

    more » « less
  3. Abstract Premise

    The scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanumsect.Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor.


    We analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession‐level phylogeny was constructed to account for relatedness.


    Wild tomato species can be differentiated by their VOCs, withSolanum pennelliinotably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored‐fruited species from the nine green‐fruited species, particularly for nitrogen‐containing compounds (higher in colored‐fruited) and esters (higher in green‐fruited), the latter appearing to signal a sugar reward.


    We established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen‐containing compounds, volatiles important to tomato flavor.

    more » « less

    Functional studies of skeletal anatomy are predicated on the fundamental assumption that form will follow function. For instance, previous studies have shown that the femora of specialized leaping primates are more robust than those of more generalized primate quadrupeds. Are such differences solely a plastic response to differential loading patterns during postnatal life, or might they also reflect more canalized developmental mechanisms present at birth? Here, we show that perinatalLemur catta, an arboreal/terrestrial quadruped, have less robust femora than perinatalPropithecus coquereli, a closely related species specialized for vertical clinging and leaping (a highly unusual locomotor mode in which the hindlimbs are used to launch the animal between vertical tree trunks). These results suggest that functional differences in long bone cross‐sectional dimensions are manifest at birth, belying simple interpretations of adult postcranial form as a direct record of loading patterns during postnatal life. Despite these significant differences in bone robusticity, we find that hindlimb bone mineralization, material properties, and measures of whole‐bone strength generally overlap in perinatalL. cattaandP. coquereli, indicating little differentiation in postcranial maturity at birth despite known differences in the pace of craniodental development between the species. In a broader perspective, our results likely reflect evolution acting during prenatal ontogeny. Even though primates are notable for relatively prolonged gestation and postnatal parental care, neonates are not buffered from selection, perhaps especially in the unpredictable and volatile environment of Madagascar. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:250–264, 2020. © 2018 American Association for Anatomy

    more » « less
  5. Abstract

    Color variation is one of the most obvious examples of variation in nature, but biologically meaningful quantification and interpretation of variation in color and complex patterns are challenging. Many current methods for assessing variation in color patterns classify color patterns using categorical measures and provide aggregate measures that ignore spatial pattern, or both, losing potentially important aspects of color pattern.

    Here, we presentColormesh, a novel method for analyzing complex color patterns that offers unique capabilities. Our approach is based on unsupervised color quantification combined with geometric morphometrics to identify regions of putative spatial homology across samples, from histology sections to whole organisms.Colormeshquantifies color at individual sampling points across the whole sample.

    We demonstrate the utility ofColormeshusing digital images of Trinidadian guppies (Poecilia reticulata), for which the evolution of color has been frequently studied. Guppies have repeatedly evolved in response to ecological differences between up‐ and downstream locations in Trinidadian rivers, resulting in extensive parallel evolution of many phenotypes. Previous studies have, for example, compared the area and quantity of discrete color (e.g., area of orange, number of black spots) between these up‐ and downstream locations neglecting spatial placement of these areas. Using theColormeshpipeline, we show that patterns of whole‐animal color variation do not match expectations suggested by previous work.

    Colormeshcan be deployed to address a much wider range of questions about color pattern variation than previous approaches. Colormesh is thus especially suited for analyses that seek to identify the biologically important aspects of color pattern when there are multiple competing hypotheses or even no a priori hypotheses at all.

    more » « less