Plant oils are valuable commodities for food, feed, renewable industrial feedstocks and biofuels. To increase vegetable oil production, here we show that the nonspecific phospholipase C6 (NPC6) promotes seed oil production in the Brassicaceae seed oil species Arabidopsis, Camelina and oilseed rape. Overexpression of Candidate‐gene association study in oilseed rape indicates that only These results indicate that NPC6 promotes membrane glycerolipid turnover to accumulate TAG production in oil seeds and that
Heteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of
- NSF-PAR ID:
- 10446070
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 110
- Issue:
- 4
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 1035-1046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary NPC6 increased seed oil content, seed weight and oil yield both in Arabidopsis and Camelina, whereas knockout ofNPC6 decreased seed oil content and seed size. NPC6 is associated with the chloroplasts and microsomal membranes, and hydrolyzes phosphatidylcholine and galactolipids to produce diacylglycerol. Knockout and overexpression of NPC6 decreased and increased, respectively, the flux of fatty acids from phospholipids and galactolipids into triacylglycerol production.BnNPC6.C01 of the four homeologuesNPC6s is associated with seed oil content and yield. Haplotypic analysis indicates that theBnNPC6.C01 favorable haplotype can increase both seed oil content and seed yield.NPC6 has a great application potential for oil yield improvement. -
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step in the de novo synthesis of fatty acids. The multisubunit ACCase in the chloroplast is activated by a shift to pH 8 upon light adaptation and is inhibited by a shift to pH 7 upon dark adaptation. Here, titrations with the purified ACCase biotin attachment domain-containing (BADC) and biotin carboxyl carrier protein (BCCP) subunits from Arabidopsis indicated that they can competently and independently bind biotin carboxylase (BC) but differ in responses to pH changes representing those in the plastid stroma during light or dark conditions. At pH 7 in phosphate buffer, BADC1 and BADC2 gain an advantage over BCCP1 and BCCP2 in affinity for BC. At pH 8 in KCl solution, however, BCCP1 and BCCP2 had more than 10-fold higher affinity for BC than did BADC1. The pH-modulated shifts in BC preferences for BCCP and BADC partners suggest they contribute to light-dependent regulation of heteromeric ACCase. Using NMR spectroscopy, we found evidence for increased intrinsic disorder of the BADC and BCCP subunits at pH 7. We propose that this intrinsic disorder potentially promotes fast association with BC through a “fly-casting mechanism.” We hypothesize that the pH effects on the BADC and BCCP subunits attenuate ACCase activity by night and enhance it by day. Consistent with this hypothesis, Arabidopsis badc1 badc3 mutant lines grown in a light–dark cycle synthesized more fatty acids in their seeds. In summary, our findings provide evidence that the BADC and BCCP subunits function as pH sensors required for light-dependent switching of heteromeric ACCase activity.more » « less
-
Summary Despite well established roles of micro
RNA s in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA 167A (miR167OE ) in camelina (Camelina sativa ) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OE seeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (Cs ) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsFAD 3ARF 8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF 8 bound to promoters of camelina andbZIP 67 genes. These transcription factors directly or through theABI 3ABI 3‐bZIP 12 pathway regulateCs expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsFAD 3ARF 8 mediated transcriptional cascade forCs suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167FAD 3OE , including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down‐regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina. -
Abstract In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates
CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, “envelope docking” of ACCase permits fine-tuning of fatty acid supply during the plant life cycle. -
Abstract Winter camelina [
Camelina sativa (L.) Crantz] is a potential third crop to diversify maize (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotations in the upper Midwest. Although generally considered a low‐input crop, empirical evidence suggests that it responds to added nitrogen (N) fertilization. However, optimum agronomic N rates have not been extensively studied in the region. A study was conducted from fall 2018 to fall 2020 at three locations to assess the effects of N fertilizer application time (all N‐rate applied in spring and N‐rate split applied in fall and spring) and rates on biomass and seed yield, and quality of winter camelina. Nitrogen application time did not affect yields. Both biomass and seed yields were greatly affected by N rates at all locations. Nitrogen had minimal effects on the oil and protein content of seeds, although greater N rates were associated with a slight decrease in oil content and a slight increase in protein content. The number of branches and silicles per plant varied significantly with N rates in all locations. The seed‐to‐silicle ratio showed significant differences in two out of three locations. Residual soil N increased with increasing N rates. A fertilization rate of 67 kg ha−1provided the highest camelina seed yield. While this study has determined the agronomic maximum rate for applied N, further economic analysis could provide comprehensive decision‐making for farmers.