Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure. 
                        more » 
                        « less   
                    
                            
                            Large‐diameter trees affect snow duration in post‐fire old‐growth forests
                        
                    
    
            Abstract Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1761441
- PAR ID:
- 10446079
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecohydrology
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 1936-0584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract With climate warming and drying, fire activity is increasing in Cajander larch (Larix cajanderiMayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m−2in low-density stands to ~ 11,000 g C m−2in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m−2and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions.more » « less
- 
            While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change.more » « less
- 
            Summary The mortality rates of large trees are critical to determining carbon stocks in tropical forests, but the mechanisms of tropical tree mortality remain poorly understood. Lightning strikes thousands of tropical trees every day, but is commonly assumed to be a minor agent of tree mortality in most tropical forests.We use the first systematic quantification of lightning‐caused mortality to show that lightning is a major cause of death for the largest trees in an old‐growth lowland forest in Panama. A novel lightning strike location system together with field surveys of strike sites revealed that, on average, each strike directly kills 3.5 trees (> 10 cm diameter) and damages 11.4 more.Given lightning frequency data from the Earth Networks Total Lightning Network and historical total tree mortality rates for this site, we conclude that lightning accounts for 40.5% of the mortality of large trees (> 60 cm diameter) in the short term and probably contributes to an additional 9.0% of large tree deaths over the long term.Any changes in cloud‐to‐ground lightning frequency due to climatic change will alter tree mortality rates; projected 25–50% increases in lightning frequency would increase large tree mortality rates in this forest by 9–18%. The results of this study indicate that lightning plays a critical and previously underestimated role in tropical forest dynamics and carbon cycling.more » « less
- 
            Montane snowpack in the Sierra Nevada provides critical water resources for ecological functions and downstream communities. Forest removal allows us to manage the snowpack in montane forests and mitigate the effect of climate on water resources. Little is known about the mid- to long-term effects that changing snowpack following forest disturbance has on tree re-growth, and how tree re-growth might in turn affect snowpack accumulation and melt. We use a 1-m resolution process-based snow model (SnowPALM) coupled with a stand-scale ecohydrological model (RHESSys) that resolves water, energy and carbon cycling to represent tree growth, and to quantify how trees and snowpack co-evolve following two disturbance scenarios (thinning and clearcutting) over a period of 40 years in a small 100 m x 234 m mid-elevation forested area in the Sierra Nevada, California. We first calculate the impact of forest disturbance on the snowpack assuming no tree regrowth and then we compare it with scenarios that include the feedback of trees regrowth on the snowpack. Without tree regrowth, snow accumulation and melt volume increase on average by roughly 5 % and 13 % following thinning and clearcutting, respectively. With tree regrowth, a regrowth rate of 0.75 and 1.15 m/decade are found for thinning and clearcutting, respectively, along with a decrease of melt volumes of 2.5 to 0.9 mm/decade, respectively. About 50 % of the snowmelt volume gains from forest thinning are lost after 40 years of regrowth, whereas only about 7 % is lost from clearcutting after the same period, which are largely explained by changes to canopy interception and sublimation. This proof-of-concept study is expected to shed light into the coevolution of montane forests and snowpack response to forest disturbance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
