skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large‐diameter trees affect snow duration in post‐fire old‐growth forests
Abstract Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt.  more » « less
Award ID(s):
1761441
PAR ID:
10446079
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecohydrology
Volume:
15
Issue:
3
ISSN:
1936-0584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure. 
    more » « less
  2. Abstract With climate warming and drying, fire activity is increasing in Cajander larch (Larix cajanderiMayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m−2in low-density stands to ~ 11,000 g C m−2in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m−2and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions. 
    more » « less
  3. While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change. 
    more » « less
  4. Summary The mortality rates of large trees are critical to determining carbon stocks in tropical forests, but the mechanisms of tropical tree mortality remain poorly understood. Lightning strikes thousands of tropical trees every day, but is commonly assumed to be a minor agent of tree mortality in most tropical forests.We use the first systematic quantification of lightning‐caused mortality to show that lightning is a major cause of death for the largest trees in an old‐growth lowland forest in Panama. A novel lightning strike location system together with field surveys of strike sites revealed that, on average, each strike directly kills 3.5 trees (> 10 cm diameter) and damages 11.4 more.Given lightning frequency data from the Earth Networks Total Lightning Network and historical total tree mortality rates for this site, we conclude that lightning accounts for 40.5% of the mortality of large trees (> 60 cm diameter) in the short term and probably contributes to an additional 9.0% of large tree deaths over the long term.Any changes in cloud‐to‐ground lightning frequency due to climatic change will alter tree mortality rates; projected 25–50% increases in lightning frequency would increase large tree mortality rates in this forest by 9–18%. The results of this study indicate that lightning plays a critical and previously underestimated role in tropical forest dynamics and carbon cycling. 
    more » « less
  5. Abstract We present meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains (USA) over three consecutive water years with different amounts of snow water equivalent (SWE) accumulation: A year with above average SWE (2019), a year with average SWE (2020), and a year with below average SWE (2021). This data set is distinguished by its emphasis on paired open‐forest sites in a continental snow climate. Approximately once a month during February–May, we collected data from 15 to 20 snow pits and took 8 to 19 snow depth transects. Our sampling sites were in open and adjacent forested areas at 3,100 m and in a lower elevation aspen (3,035 m) and higher elevation conifer stand (3,395 m). In total, we recorded 270 individual snow pit density and temperature profiles and over 4,000 snow depth measurements. These data are complimented by continuous meteorological measurements from two weather stations: One in the open and one in the adjacent forest. Meteorology data—including incoming shortwave and longwave radiation, outgoing shortwave radiation, relative humidity, wind speed, snow depth, and air and infrared surface temperature—were quality controlled and the forcing data were gap‐filled. These data are available to download from Bonner, Smyth, et al. (2022) athttps://doi.org/10.5281/zenodo.6618553, at three levels of processing, including a level with downscaled, adjusted precipitation based on data assimilation using observed snow depth and a process‐based snow model. We demonstrate the utility of these data with a modeling experiment that explores open‐forest differences and identifies opportunities for improvements in model representation. 
    more » « less