skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean
Abstract Picoplankton populations dominate the planktonic community in the surface oligotrophic ocean. Yet, their strategies in the acquisition and the partitioning of organic and inorganic sources of nitrogen (N) and carbon (C) are poorly described. Here, we measured at the single‐cell level the uptake of dissolved inorganic C (C‐fixation), C‐leucine, N‐leucine, nitrate (NO3), ammonium (NH4+), and N‐urea in pigmented and nonpigmented picoplankton groups at six low‐N stations in the northwestern Atlantic Ocean. Our study highlights important differences in trophic strategies betweenProchlorococcus,Synechococcus, photosynthetic pico‐eukaryotes, and nonpigmented prokaryotes. Nonpigmented prokaryotes were characterized by high leucine uptake rates, nonsignificant C‐fixation and relatively low NH4+, N‐urea, and NO3uptake rates. Nonpigmented prokaryotes contributed to 7% ± 3%, 2% ± 2%, and 9% ± 5% of the NH4+, NO3, and N‐urea community uptake, respectively. In contrast, pigmented groups displayed relatively high C‐fixation rates, NH4+and N‐urea uptake rates, but lower leucine uptake rates than nonpigmented prokaryotes.Synechococcusand photosynthetic pico‐eukaryotes NO3uptake rates were higher thanProchlorococcusones. Pico‐sized pigmented groups accounted for a significant fraction of the community C‐fixation (63% ± 27%), NH4+uptake (47% ± 27%), NO3uptake (62% ± 49%), and N‐urea uptake (81% ± 35%). Interestingly,Prochlorococcusand photosynthetic pico‐eukaryotes showed a greater reliance on C‐ and N‐leucine thanSynechococcuson average, suggesting a greater reliance on organic C and N sources. Taken together, our single‐cell results decipher the wide diversity of C and N trophic strategies between and within marine picoplankton groups, but a clear partitioning between pigmented and nonpigmented groups still remains.  more » « less
Award ID(s):
1434916 1458070
PAR ID:
10446153
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
10
ISSN:
0024-3590
Page Range / eLocation ID:
p. 3682-3696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3−), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3− represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3− uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3− uptake within groups facilitates adaptation to the fluctuating availability of NO3− in the environment. 
    more » « less
  2. Johnson, Karyn N. (Ed.)
    ABSTRACT Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis , Porites astreoides , and Stephanocoenia intersepta . Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus , three groups of Synechococcus , photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus , all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day −1 , respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h −1 and 387 ng h −1 , depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus , coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs. IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down. 
    more » « less
  3. Dubilier, Nicole (Ed.)
    ABSTRACT Prochlorococcusis an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade ofProchlorococcus, nearly all cells can assimilate nitrite (NO2), with a subset capable of assimilating nitrate (NO3). LLI cells are maximally abundant near the primary NO2maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3reduction and subsequent NO2release by phytoplankton. We hypothesized that someProchlorococcusexhibit incomplete assimilatory NO3reduction and examined NO2accumulation in cultures of threeProchlorococcusstrains (MIT0915, MIT0917, and SB) and twoSynechococcusstrains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2during growth on NO3. Approximately 20–30% of the NO3transported into the cell by MIT0917 was released as NO2, with the rest assimilated into biomass. We further observed that co-cultures using NO3as the sole N source could be established for MIT0917 andProchlorococcusstrain MIT1214 that can assimilate NO2but not NO3. In these co-cultures, the NO2released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates withinProchlorococcuspopulations. IMPORTANCEEarth’s biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations ofProchlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, someProchlorococcuscells release extracellular NO2during growth on NO3. In the wild,Prochlorococcuspopulations are composed of multiple functional types, including those that cannot use NO3but can still assimilate NO2. We show that metabolic dependencies arise whenProchlorococcusstrains with complementary NO2production and consumption phenotypes are grown together on NO3. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates. 
    more » « less
  4. Abstract We found that in the phosphate (PO4)‐depleted western subtropical North Atlantic Ocean, small‐sized pigmented eukaryotes (P‐Euk; < 5 μm) play a central role in the carbon (C) cycling. Although P‐Euk were only ~ 5% of the microbial phytoplankton cell abundance, they represented at least two thirds of the microbial phytoplankton C biomass and fixed more CO2than picocyanobacteria, accounting for roughly half of the volumetric CO2fixation by the microbial phytoplankton, or a third of the total primary production. Cell‐specific PO4assimilation rates of P‐Euk and nonpigmented eukaryotes (NP‐Euk; < 5 μm) were generally higher than of picocyanobacteria. However, when normalized to biovolumes, picocyanobacteria assimilated roughly four times more PO4than small eukaryotes, indicating different strategies to cope with PO4limitation. Our results underline an imbalance in the CO2: PO4uptake rate ratios, which may be explained by phagotrophic predation providing mixotrophic protists with their largest source of PO4. 18S rDNA amplicon sequence analyses suggested that P‐Euk was dominated by members of green algae and dinoflagellates, the latter group commonly mixotrophic, whereas marine alveolates were the dominant NP‐Euk. Bacterivory by P‐Euk (0.9 ± 0.3 bacteria P‐Euk−1h−1) was comparable to values previously measured in the central North Atlantic, indicating that small mixotrophic eukaryotes likely exhibit similar predatory pressure on bacteria. Interestingly, bacterivory rates were reduced when PO4was added during experimental incubations, indicating that feeding rate by P‐Euk is regulated by PO4availability. This may be in response to the higher cost associated with assimilating PO4by phagocytosis compared to osmotrophy. 
    more » « less
  5. Key Points Simulated Prochlorococcus , Synechococcus , and pico‐eukaryotes contribute ∼60% of marine net primary productivity (NPP) Pico‐phytoplankton cycling contributes half of the marine export production, approaching parity with their contribution to NPP Pico‐eukaryotes and diatoms with elevated C:P stoichiometry enhance carbon export at poleward flanks of western boundary currents 
    more » « less