Radicals and other open-shell molecules play a central role in chemical transformations and redox chemistry. While radicals are often highly reactive, stable radical systems are desirable for a range of potential applications, ranging from materials chemistry and catalysis to spintronics and quantum information. Here we investigate the ultrafast properties of a stable radical system with temperature-dependent spin-tunable properties. This radical complex, Cu(II) hexaethyl tripyrrin-1,14-dione, accommodates unpaired electrons localized on both the copper metal center and the tripyrrolic ligand. The unusual combination of two unpaired electrons and high stability in this radical molecule enable switchable temperature-dependent spin coupling. Two-dimensional electronic spectroscopy measurements of Cu(II) hexaethyl tripyrrin-1,14-dione were collected at room temperature and at 77 K. At room temperature, the molecules are present as monomers and have short picosecond lifetimes. At 77 K, the molecules are present in a dimer form mediated by ferromagnetic and antiferromagnetic coupling. This reversible spin-driven dimerization changes the optical properties of the system, generating long-lived excitonic states.
more »
« less
Radical Complexes of Nickel(II)/Copper(II) and Redox Non‐innocent MB‐DIPY Ligands: Unusual Stability and Strong Near‐Infrared Absorption at λ max ∼1300 nm
Abstract The preparation of radicals with intense and redox‐switchable absorption beyond 1000 nm is a long‐standing challenge in the chemistry of functional dyes. Here we report the preparation of a series of unprecedented stable neutral nickel(II) and copper(II) complexes of “Manitoba dipyrromethenes” (MB‐DIPYs) in which the organic chromophore is present in the radical‐anion state. The new stable radicals have an intense absorption atλmax∼1300 nm and can be either oxidized to regular [MII(MB‐DIPY)]+(M=Cu or Ni) or reduced to [MII(MB‐DIPY)]−compounds. The radical nature of the stable [MII(MB‐DIPY)] complexes was confirmed by EPR spectroscopy with additional insight into their electronic structure obtained by UV‐Vis spectroscopy, electro‐ and spectroelectrochemistry, magnetic measurements, and X‐ray crystallography. The electronic structures and spectroscopic properties of the radical‐based chromophores were also probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations. These nickel(II) and copper(II) complexes represent the first stable radical compounds with a MB‐DIPY ligand.
more »
« less
- Award ID(s):
- 2153081
- PAR ID:
- 10446170
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 41
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biopyrrin pigments, which result from the degradation of heme in biological settings, feature three or two pyrrole rings and characteristic pyrrolin-2-one termini. These scaffolds serve as redox-active ligands and electron reservoirs in coordination compounds. Tripyrrin-1,14-dione coordinates divalent transition metals as a dianionic ligand hosting a delocalized radical. Herein, we report the synthesis and characterization of palladium(II) and platinum(II) tripyrrindione complexes featuring a primary amine (i.e., aniline, tert-butylamine, 1,2-ethylenediamine) at the fourth coordination site within square planar geometries. Interligand hydrogen-bonding interactions are observed between the coordinated amine and the carbonyl groups on the tripyrrindione scaffold. Notably, 1,2-ethylenediamine is employed to link two Pt(II) tripyrrindione complexes. As revealed by optical absorption and electron paramagnetic resonance (EPR) spectroscopy, all resulting complexes present ligand-based radicals that are stable at room temperature and when exposed to air. Spin pairing through multicenter interactions leads to [Formula: see text]-dimerization of the tripyrrindione radicals and a decrease in the EPR signal at low temperatures. Electrochemical measurements indicate that the ligand system undergoes quasi-reversible one-electron oxidation and reduction, thus confirming the ability of tripyrrindione to form square planar complexes in three different redox states.more » « less
-
Hydrogen-rich cation radicals (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ represent oligonucleotide models of charged hydrogen atom adducts to DNA. These tetranucleotide cation radicals were generated in the gas phase by one-electron reduction of the respective (GATT + 2H) 2+ and (AGTT + 2H) 2+ dications in which the charging protons were placed on the guanine and adenine nucleobases. We used wavelength-dependent UV/Vis photodissociation in the valence-electron excitation region of 210–700 nm to produce action spectra of (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ that showed radical-associated absorption bands in the near-UV (330 nm) and visible (400–440 nm) regions. Born–Oppenheimer molecular dynamics and density-functional theory calculations were used to obtain and rank by energy multiple (GATT + 2H) dication and cation-radical structures. Time-dependent density functional theory (TD-DFT) calculations of excited-state energies and electronic transitions in (GATT + 2H) + ˙ were augmented by vibronic spectra calculations at 310 K for selected low-energy cation radicals to provide a match with the action spectrum. The stable product of one-electron reduction was identified as having a 7,8-dihydroguanine cation radical moiety, formed by intramolecular hydrogen atom migration from adenine N-1–H. The hydrogen migration was calculated to have a transition state with a low activation energy, E a = 96.5 kJ mol −1 , and positive activation entropy, Δ S ‡ = 75 J mol −1 K −1 . This allowed for a fast isomerization of the primary reduction products on the ion-trap time scale of 150 ms that was substantially accelerated by highly exothermic electron transfer.more » « less
-
The tripyrrin-1,14-dione biopyrrin, which shares the scaffold of several naturally occurring heme metabolites, is a redox-active platform for metal coordination. We report the synthesis of square planar platinum( ii ) tripyrrindiones, in which the biopyrrin binds as a tridentate radical and the fourth coordination position is occupied by either aqua or tert -butyl isocyanide ligands. These complexes are stable through chromatographic purification and exposure to air. Electron paramagnetic resonance (EPR) data and density functional theory (DFT) analysis confirm that the spin density is located predominantly on the tripyrrindione ligand. Pancake bonding in solution between the Pt( ii ) tripyrrindione radicals leads to the formation of diamagnetic π dimers at low temperatures. The identity of the monodentate ligand ( i.e. , aqua vs . isocyanide) affects both the thermodynamic parameters of dimerization and the tripyrrindione-based redox processes in these complexes. Isolation and structural characterization of the oxidized complexes revealed stacking of the diamagnetic tripyrrindiones in the solid state as well as a metallophilic Pt( ii )−Pt( ii ) contact in the case of the aqua complex. Overall, the properties of Pt( ii ) tripyrrindiones, including redox potentials and intermolecular interactions in solution and in the solid state, are modulated through easily accessible changes in the redox state of the biopyrrin ligand or the nature of the monodentate ligand.more » « less
-
Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less
An official website of the United States government
