skip to main content


Title: Asymmetric Synthesis of Bicyclic Pyrazolidinones through Alkaloid‐Catalyzed [3+2]‐Cycloadditions of Ketenes and Azomethine Imines
Abstract

A versatile asymmetric synthesis of bicyclic pyrazolidinones through alkaloid‐catalyzed formal [3+2]‐ and [3+2+2]‐cycloadditions of ketenes with azomethine imines is described. The methodology was found to be tolerant of ketene and a variety of monosubstituted ketenes (R=alkyl, OAc). The products were formed in good to excellent yields (71–99 % for 24 examples, 39 examples in all), with good to excellent diastereoselectivity in many cases (dr 3 : 1 to 27 : 1 for 22 examples), and with excellent enantioselectivity for most examples (≥93 %eefor 34 products). In the case of most disubstituted ketenes, the reaction proceeded through a [3+2+2]‐cycloaddition to form structurally interesting bicyclic pyrazolo‐oxadiazepinediones with moderate diastereoselectivity (dr up to 3.7 : 1) and as racemic mixtures (3 examples). The method represents the first unambiguous example of an enantioselective reaction between ketenes and a 1,3‐dipole.

 
more » « less
NSF-PAR ID:
10446186
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
21
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbon‐centered radicals stabilized by adjacent boron atoms are underexplored reaction intermediates in organic synthesis. This study reports the development of vinyl cyclopropyl diborons (VCPDBs) as a versatile source of previously unknown homoallylic α,α‐diboryl radicals via thiyl radical catalyzed diboron‐directed ring opening. These diboryl stabilized radicals underwent smooth [3+2] cycloaddition with a variety of olefins to provide diboryl cyclopentanes in good to excellent diastereoselectivity. In contrast to thetrans‐diastereoselectivity observed with most of the dicarbonyl activated VCPs, the cycloaddition of VCPDBs showed a remarkable preference for formation ofcis‐cyclopentane diastereomer which was confirmed by quantitative NOE and 2D NOESY studies. Thecis‐stereochemistry of cyclopentane products enabled a concise intramolecular Heck reaction approach to rare tricyclic cyclopentanoid framework containing the diboron group. The mild reaction conditions also allowed a one‐pot VCP ring‐opening, cycloaddition‐oxidation sequence to afford disubstituted cyclopentanones. Control experiments and DFT analysis of reaction mechanism support a radical mediated pathway and provide a rationale for the observed diastereoselectivity. To the authors’ knowledge, these are the first examples of the use of geminal diboryl group as an activator of VCP ring opening and cycloaddition reaction of α‐boryl radicals.

     
    more » « less
  2. Catalytic hydrogenolysis of theZ‐isomer of a series of aryl‐substituted ketene heterodimer β‐lactones facilitated access to deoxypropionate derivatives with adrranging from 54:46 to 86:14, favoring theanti‐isomer, and with excellent transfer of chirality (91 → 99 %eefor 13 examples). Although X = 4‐F was determined to provide optimal diastereoselectivity (dr86:14), a non‐linear relationship between diastereoselectivity and aryl substituentσvalues was found. For cases where apara‐ orortho‐EWG was present on the aryl ring of the ketene heterodimer, formation of significant amounts of β‐lactone (20–44 %) as by‐product was observed. The results of a number of control reactions point toanti‐β‐elimination and ananti‐selective hydrogenation of anE‐isomer olefin intermediate being key steps in the reaction mechanism. The synthetic potential of the deoxypropionate derivative products was demonstrated by oxidative conversion into a 1,5‐difunctionalized deoxypropionate motif.

     
    more » « less
  3. Abstract

    The diastereodivergent synthesis of bridged 1,2,3,4‐tetrahydroisoquinoline derivatives has been achieved by using appropriate modularly designed organocatalysts (MDOs) that are self‐assembled in situ from amino acids and cinchona alkaloid derivatives. The domino Mannich/aza‐Michael/aldol reaction between (E)‐2‐[2‐(3‐aryl‐3‐oxoprop‐1‐en‐1‐yl)phenyl]acetaldehydes and ethyl or benzyl (E)‐2‐[(4‐methoxyphenyl)imino]acetates catalyzed by MDOs gives two different diastereomers of the desired bridged tetrahydroisoquinolines in good yields and excellent diastereoselectivities (up to 99:1 dr) and enantioselectivities (up to >99%ee). The diastereodivergence was achieved in the aldol reaction step.

    magnified image

     
    more » « less
  4. Abstract

    Palladium‐catalyzed allylic alkylation of 2‐aryl‐1,3‐dithianes at room temperature is described. A variety of cyclic and acyclic electrophiles successfully coupled within‐situgenerated 2‐sodio‐1,3‐dithiane nucleophiles to afford the allylated products in good to excellent yields (25 examples). Deprotection of these products leads to valuable β,γ‐unsaturated ketones. Direct synthesis of such β,γ‐unsaturated ketones via a one‐pot allylation‐oxidation protocol is also presented. Investigation into the stereochemistry of the allylation reaction revealed that the 2‐sodio‐1,3‐dithiane nucleophile behaves as a “soft” nucleophile, which underwent external attack on the π‐allyl palladium complex to provide retention of stereochemistry (double inversion pathway). Additionally, the utility of this method was demonstrated through a sequential one‐pot allylation‐Heck cyclization to produce asterogynin derivatives, which are important bioactive compounds in medicinal chemistry.

    magnified image

     
    more » « less
  5. Abstract

    N‐Methylation of methyl 5‐hydroxynicotinate followed by reaction with a diene in the presence of triethylamine afforded (4+3) cycloadducts in good to excellent yields. High regioselectivity was observed with 1‐substituted and 1,2‐disubstituted butadienes. Density functional theory calculations indicate that the cycloaddition involves concerted addition of the diene onto the oxidopyridinium ion. The process provides rapid access to bicyclic nitrogenous structures resembling natural alkaloids.

     
    more » « less