skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Vertical Structure of Oceanic Mesoscale Tracer Diffusivities
Abstract Isopycnal mixing of tracers is important for ocean dynamics and biogeochemistry. Previous studies have primarily focused on the horizontal structure of mixing, but what controls its vertical structure is still unclear. This study investigates the vertical structure of the isopycnal tracer diffusivity diagnosed by a multiple‐tracer inversion method in an idealized basin circulation model. The first two eigenvalues of the symmetric part of the 3D diffusivity tensor are approximately tangent to isopycnal surfaces. The isopycnal mixing is anisotropic, with principal directions of the large and small diffusivities generally oriented along and across the mean flow direction. The cross‐stream diffusivity can be reconstructed from the along‐stream diffusivity after accounting for suppression of mixing by the mean flow. In the circumpolar channel and the upper ocean in the gyres, the vertical structure of the along‐stream diffusivity follows that of the rms eddy velocity times a depth‐independent local energy‐containing scale estimated from the sea surface height. The diffusivity in the deep ocean in the gyres instead follows the profile of the eddy kinetic energy times a depth‐independent mixing time scale. The transition between the two mixing regimes is attributed to the dominance of nonlinear interactions and linear waves in the upper and deep ocean, respectively, distinguished by a nonlinearity parameter. A formula is proposed that accounts for both regimes and captures the vertical variation of diffusivities better than extant theories. These results inform efforts to parameterize the vertical structure of isopycnal mixing in coarse‐resolution ocean models.  more » « less
Award ID(s):
2048826
PAR ID:
10446245
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
6
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mixing along isopycnals plays an important role in the transport and uptake of oceanic tracers. Isopycnal mixing is commonly quantified by a tracer diffusivity. Previous studies have estimated the tracer diffusivity using the rate of dispersion of surface drifters, subsurface floats, or numerical particles advected by satellite‐derived velocity fields. This study shows that the diffusivity can be more efficiently estimated from the dispersion of coherent mesoscale eddies. Coherent eddies are identified and tracked as the persistent sea surface height extrema in both a two‐layer quasigeostrophic (QG) model and an idealized primitive equation (PE) model. The Lagrangian diffusivity is estimated using the tracks of these coherent eddies and compared to the diagnosed Eulerian diffusivity. It is found that the meridional coherent eddy diffusivity approaches a stable value within about 20–40 days in both models. In the QG model, the coherent eddy diffusivity is a good approximation to the upper‐layer tracer diffusivity in a broad range of flow regimes, except for small values of bottom friction or planetary vorticity gradient, where the motions of same‐sign eddies are correlated over long distances. In the PE model, the tracer diffusivity has a complicated vertical structure and the coherent eddy diffusivity is correlated with the tracer diffusivity at the e‐folding depth of the energy‐containing eddies where the intrinsic speed of the coherent eddies matches the rms eddy velocity. These results suggest that the oceanic tracer diffusivity at depth can be estimated from the movements of coherent mesoscale eddies, which are routinely tracked from satellite observations. 
    more » « less
  2. null (Ed.)
    Abstract Theories of the Beaufort Gyre (BG) dynamics commonly represent the halocline as a single layer with a thickness depending on the Eulerian-mean and eddy-induced overturning. However, observations suggest that the isopycnal slope increases with depth, and a theory to explain this profile remains outstanding. Here we develop a multilayer model of the BG, including the Eulerian-mean velocity, mesoscale eddy activity, diapycnal mixing, and lateral boundary fluxes, and use it to investigate the dynamics within the Pacific Winter Water (PWW) layer. Using theoretical considerations, observational data, and idealized simulations, we demonstrate that the eddy overturning is critical in explaining the observed vertical structure. In the absence of the eddy overturning, the Ekman pumping and the relatively weak vertical mixing would displace isopycnals in a nearly parallel fashion, contrary to observations. This study finds that the observed increase of the isopycnal slope with depth in the climatological state of the gyre is consistent with a Gent–McWilliams eddy diffusivity coefficient that decreases by at least 10%–40% over the PWW layer. We further show that the depth-dependent eddy diffusivity profile can explain the relative magnitude of the correlated isopycnal depth and layer thickness fluctuations on interannual time scales. Our inference that the eddy overturning generates the isopycnal layer thickness gradients is consistent with the parameterization of eddies via a Gent–McWilliams scheme but not potential vorticity diffusion. This study implies that using a depth-independent eddy diffusivity, as is commonly done in low-resolution ocean models, may contribute to misrepresentation of the interior BG dynamics. 
    more » « less
  3. Abstract Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (in the direction of topographic Rossby wave propagation along isobaths; aka topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in downslope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and upslope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role. 
    more » « less
  4. Abstract Ocean turbulent mixing is a key process affecting the uptake and redistribution of heat, carbon, nutrients, oxygen and other dissolved gasses. Vertical turbulent diffusivity sets the rates of water mass transformations and ocean mixing, and is intrinsically an average quantity over process time scales. Estimates based on microstructure profiling, however, are typically obtained as averages over individual profiles. How representative such averaged diffusivities are, remains unexplored in the quiescent Arctic Ocean. Here, we compare upper ocean vertical diffusivities in winter, derived from the7Be tracer‐based approach to those estimated from direct turbulence measurements during the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, 2019–2020. We found that diffusivity estimates from both methods agree within their respective measurement uncertainties. Diffusivity estimates obtained from dissipation rate profiles are sensitive to the averaging method applied, and the processing and analysis of similar data sets must take this sensitivity into account. Our findings indicate low characteristic diffusivities around 10−6 m2 s−1and correspondingly low vertical heat fluxes. 
    more » « less
  5. Abstract Cross-frontal exchange facilitated by mesoscale eddies in the lee of major topographic features of the Southern Ocean is fundamental to the global overturning circulation. Despite the outsize importance for meridional heat flux, we lack an accurate estimation of fluxes across the Antarctic Circumpolar Current (ACC) due to the challenges of observing mesoscale eddy fluctuations on the temporal and spatial scales required. Here, 12 years of Argo data are used to observe patterns of cross-frontal exchange in the Southeast Indian Ridge system, a relatively underobserved region, known to be a hotspot of exchange. Spice variance along ACC streamlines is used as a proxy for cross-frontal exchange. Elevated exchange is observed downstream of the ridge system in nearly every streamline and is particularly prominent in the core of the ACC. Notably, exchange peaks progressively downstream at each poleward streamline suggesting a systematic north-to-south handoff across nearly the full breadth of the ACC. Employing a mixing length framework, lateral stirring is parameterized as an eddy diffusivity on the isopycnal of peak exchange. We find a highly localized pattern of diffusivity, peaking between the crest and trough of the first standing meander in the lee of the ridge system. Spatially, this diffusivity pattern correlates with an along-stream increase in eddy kinetic energy. Along-stream vertical wavenumber spectra of spice anomaly profiles indicate that the vertical scales of intrusions, which are initially large (approximately 800 m), rapidly evolve downstream to smaller wavenumbers (100–300 m) presumably in response to intense vertical shear and filamentation. 
    more » « less