The reactivity of phosphaalkynes, the isolobal and isoelectronic congeners to alkynes, with metal alkylidyne complexes is explored in this work. Treating the tungsten alkylidyne [
The reactivity of phosphaalkynes, the isolobal and isoelectronic congeners to alkynes, with metal alkylidyne complexes is explored in this work. Treating the tungsten alkylidyne [
- Award ID(s):
- 1856674
- PAR ID:
- 10446249
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 30
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract t BuOCO]W≡Ct Bu(THF)2(1 ) with phosphaalkyne (10 ) results in the formation of [O2C(t BuC=)W{η 2‐(P ,C )−P≡C−Ad}(THF)] (13‐ t BuTHF ) and [O2C(AdC=)W{η 2‐(P ,C )−P≡C−t Bu}(THF)] (13‐AdTHF ); derived from the formal reductive migratory insertion of the alkylidyne moiety into a W−Carenebond. Analogous to alkyne metathesis, a stable phosphametallacyclobutadiene complex [t BuOCO]W[κ 2‐C(t Bu)PC(Ad)] (14 ) forms upon loss of THF from the coordination sphere of either13‐ t BuTHF or13‐AdTHF . Remarkably, the C−C bonds reversibly form/cleave with the addition or removal of THF from the coordination sphere of the formal tungsten(VI) metal center, permitting unprecedented control over the transformation of a tetraanionic pincer to a trianionic pincer and back. Computational analysis offers thermodynamic and electronic reasoning for the reversible equilibrium between13‐ t Bu/AdTHF and14 . -
Abstract We introduce the heterocumulene ligand [(Ad)NCC(
t Bu)]−(Ad=1‐adamantyl (C10H15),t Bu=tert ‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡Ct Bu(OTf)] (A ) (BDI−=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐i Pr2C6H3) and [(dBDI)V≡Ct Bu(OEt2)] (B ) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexA reacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N ‐ynamide ligand, [(BDI)V{κ1‐N ‐(Ad)NCC(t Bu)}(OTf)] (1 ). Conversely,B reacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C ,N ‐azaalleneyl ligand, [(dBDI)V{κ2‐N ,C ‐(Ad)NCC(t Bu)}] (2 ). Theoretical studies have been applied to better understand the mechanism of formation of2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1 and2 . -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
Abstract A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡C
t Bu) (2 ) (Menacnac−=[ArNC(CH3)]2CH, Ar=2,6‐i Pr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡Ct Bu(OTf) (1 ) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡Ct Bu)} (4 ), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡Ct Bu(OEt2) (3 ) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2 and4 , was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2 and4 . This study represents the first example of a metathesis reaction between the P‐atom of [PCO]−and an alkylidyne ligand. -
We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M = Mo or W; POCOPtBu = κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu = 2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.