skip to main content


Title: Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting
Abstract

Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.

 
more » « less
Award ID(s):
2047912
NSF-PAR ID:
10446251
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
23
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate that the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Liquid crystal elastomers (LCEs) are a class of stimuli‐responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer‐liquid metal (LCE‐LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high‐frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE‐LM composite is further exploited for multimodal deformation of a pop‐up structure, on‐ground omnidirectional robotic motion, and in‐water targeted object manipulation and crawling.

     
    more » « less
  4. Abstract

    Recently, liquid crystal elastomers (LCEs) have drawn much attention for its wide applications as artificial muscle in soft robotics, wearable devices, and biomedical engineering. One commonly adopted way to trigger deformation of LCEs is using embedded heating elements such as resistance heating wires and photothermal particles. To enable the material to recover to its unactuated state, passive and external cooling is often employed to lower the temperature, which is typically slow and environmentally sensitive. The slow and uncontrollable recovery speed of thermally driven artificial muscle often limits its applications when even moderate cyclic actuation rate is required. In this article, inspired by biology, a vascular LCE‐based artificial muscle (VLAM) is designed and fabricated with internal fluidic channel in which the hot or cool water is injected to heat up or cool down the material to achieve fast actuation as well as recovery. It is demonstrated that the actuation stress, strain, and cyclic response rate of the VLAM are comparable to mammalian skeletal muscle. Because of the internal heating and cooling mechanism, VLAM shows a very robust actuating performance within a wide range of environmental temperatures. The VLAM designed in this article may also provide a convenient way to harvest waste heat to conduct mechanical work.

     
    more » « less
  5. In this work, we present a method to pattern liquid crystal elastomers (LCEs) in the micrometer range without using any mechanical processing steps to prepare micron sized LCE actuators compatible with microelectromechanical system (MEMS) technology. Multi-layer spin-coating processes are developed to synthesise and structure 300–3500 nm thick LCE films. A water soluble sacrificial layer, a photoalignment layer and a LCE formulation, which is polymerised and crosslinked in its liquid crystal phase, are spin-coated successively onto a substrate. A fluorinated photoresist layer is used to structure LCE films with thicknesses up to 700 nm in a photolithographic and etching process. For thicker LCE films a hard mask process, using hydrogen silsesquioxane (HSQ) as hard mask, is used. Film thicknesses and homogeneities are analysed with profilometry. Actuation motions of LCE layers are investigated before and after patterning and LCE patterns are investigated via (polarised optical) microscopy (POM), scanning electron microscopy (SEM) and profilometry. A resolution of 1.5–2.0 microns is achieved with the described techniques, which make deformable micron sized LCE actuators of variable shape and director orientation accessible. The presented results demonstrate the potential of LCEs in MEMS devices. 
    more » « less