skip to main content


Title: Quantum Hotspots: Mean Fields, Open EFTs, Nonlocality and Decoherence Near Black Holes
Abstract

Effective theories describing black hole exteriors resemble open quantum systems inasmuch as many unmeasurable degrees of freedom beyond the horizon interact with those we can see. A solvable Caldeira‐Leggett type model of a quantum field that mixes with many unmeasured thermal degrees of freedom on a shared surface was proposed inarXiv:2106.09854to provide a benchmark against which more complete black hole calculations might be compared. We here use this model to test two types of field‐theoretic approximation schemes that also lend themselves to describing black hole behaviour: Open EFT techniques (as applied to the fields themselves, rather than Unruh‐DeWitt detectors) and mean‐field methods. Mean‐field methods are of interest because the effective Hamiltonians to which they lead can be nonlocal; a possible source for the nonlocality that is sometimes entertained as being possible for black holes in the near‐horizon regime. Open EFTs compute the evolution of the field state, allowing discussion of thermalization and decoherence even when these occur at such late times that perturbative methods fail (as they often do). Applying both of these methods to a solvable system identifies their domains of validity and shows how their predictions relate to more garden‐variety perturbative tools.

 
more » « less
NSF-PAR ID:
10446275
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
70
Issue:
4
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  2. Abstract

    We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1 + 1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical HamiltonianHΔ. The holonomy correction inHΔis implemented by theμ¯-scheme regularization with a Planckian area scale Δ (which often chosen as the minimal area gap in loop quantum gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g.RμνρσRμνρσ∼ 1/Δ2. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry dS2×S2with Planckian radiiΔ. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.

     
    more » « less
  3. null (Ed.)
    A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe. 
    more » « less
  4. Abstract The degrees of freedom that confer to strongly correlated systems their many intriguing properties also render them fairly intractable through typical perturbative treatments. For this reason, the mechanisms responsible for their technologically promising properties remain mostly elusive. Computational approaches have played a major role in efforts to fill this void. In particular, dynamical mean field theory and its cluster extension, the dynamical cluster approximation have allowed significant progress. However, despite all the insightful results of these embedding schemes, computational constraints, such as the minus sign problem in quantum Monte Carlo (QMC), and the exponential growth of the Hilbert space in exact diagonalization (ED) methods, still limit the length scale within which correlations can be treated exactly in the formalism. A recent advance aiming to overcome these difficulties is the development of multiscale many body approaches whereby this challenge is addressed by introducing an intermediate length scale between the short length scale where correlations are treated exactly using a cluster solver such QMC or ED, and the long length scale where correlations are treated in a mean field manner. At this intermediate length scale correlations can be treated perturbatively. This is the essence of multiscale many-body methods. We will review various implementations of these multiscale many-body approaches, the results they have produced, and the outstanding challenges that should be addressed for further advances. 
    more » « less
  5. A bstract Gauge and gravitational theories in asymptotically flat settings possess infinitely many conserved charges associated with large gauge transformations or diffeomorphisms that are nontrivial at infinity. To what extent do these charges constrain the scattering in these theories? It has been claimed in the literature that the constraints are trivial, due to a decoupling of hard and soft sectors for which the conserved charges constrain only the dynamics in the soft sector. We show that the argument for this decoupling fails due to the failure in infinite dimensions of a property of symplectic geometry which holds in finite dimensions. Specializing to electromagnetism coupled to a massless charged scalar field in four dimensional Minkowski spacetime, we show explicitly that the two sectors are always coupled using a perturbative classical computation of the scattering map. Specifically, while the two sectors are uncoupled at low orders, they are coupled at quartic order via the electromagnetic memory effect. This coupling cannot be removed by adjusting the definitions of the hard and soft sectors (which includes the classical analog of dressing the hard degrees of freedom). We conclude that the conserved charges yield nontrivial constraints on the scattering of hard degrees of freedom. This conclusion should also apply to gravitational scattering and to black hole formation and evaporation. In developing the classical scattering theory, we show that generic Lorenz gauge solutions fail to satisfy the matching condition on the vector potential at spatial infinity proposed by Strominger to define the field configuration space, and we suggest a way to remedy this. We also show that when soft degrees of freedom are present, the order at which nonlinearities first arise in the scattering map is second order in Lorenz gauge, but can be third order in other gauges. 
    more » « less