Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.
more »
« less
Solvothermal Synthesis of [Cr 7 S 8 (en) 8 Cl 2 ]Cl 3 ⋅ 2H 2 O with Magnetically Frustrated [Cr 7 S 8 ] 5+ Double‐Cubes**
Abstract A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks.
more »
« less
- Award ID(s):
- 2003783
- PAR ID:
- 10446288
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 5
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.more » « less
-
We report on spectroscopic measurements on the 4f76s28S7/2∘−4f7(8S∘)6s6p(1P∘)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P∘)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P∘)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results.more » « less
-
Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less
-
Abstract In this report, a facile wet chemical method using acetonitrile combined with thermal annealing was used to prepare Li2S‐P2S5(LPS) based glass‐ceramic electrolytes with (1 wt%, 3 wt%, and 5 wt% Ce2S3) and without Ce2S3doping. The crystal structure, ionic conductivity, and chemical stability of Li7P3S11glass‐ceramic electrolytes were examined at varying temperatures (250–350°C). The results indicated that the highest ionic conductivity of 3.15 × 10−4S cm−1for pure Li7P3S11was observed at a temperature of 325°C. By incorporating 1 wt% Ce2S3and subjecting it to a heat treatment at 250°C, the glass ceramic electrolyte attained a remarkable ionic conductivity of 7.7 × 10−4(S cm−1) at 25°C. Furthermore, it exhibited a stable and extensive electrochemical potential range, reaching up to 5 volts when compared to the Li/Li+reference electrode. By tuning the glass transition and crystallization temperature, cerium doping seems to make Li7P3S11more chemically stable, compared to its original 70Li2S‐30P2S5counterpart. According to Raman and X‐ray photoelectron spectroscopy analyses, cerium doping inhibits the decomposition of highly conductive P2S74‐(pyro‐thiophosphate) to PS43−and P2S64−. Doped LPS has a greater crystallinity and more uniform microstructure than pure LPS, according to XRD, Raman spectroscopy, and scanning electron microscopy analysis. Consequently, Li7P2.9Ce0.1S11electrolyte shows great potential as a solid‐state electrolyte for constructing high‐performance sulfide‐based all‐solid‐state batteries.more » « less