skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Foundations for Soft, Smart Matter by Active Mechanical Metamaterials
Abstract Emerging interest to synthesize active, engineered matter suggests a future where smart material systems and structures operate autonomously around people, serving diverse roles in engineering, medical, and scientific applications. Similar to biological organisms, a realization of active, engineered matter necessitates functionality culminating from a combination of sensory and control mechanisms in a versatile material frame. Recently, metamaterial platforms with integrated sensing and control have been exploited, so that outstanding non‐natural material behaviors are empowered by synergistic microstructures and controlled by smart materials and systems. This emerging body of science around active mechanical metamaterials offers a first glimpse at future foundations for autonomous engineered systems referred to here as soft, smart matter. Using natural inspirations, synergy across disciplines, and exploiting multiple length scales as well as multiple physics, researchers are devising compelling exemplars of actively controlled metamaterials, inspiring concepts for autonomous engineered matter. While scientific breakthroughs multiply in these fields, future technical challenges remain to be overcome to fulfill the vision of soft, smart matter. This Review surveys the intrinsically multidisciplinary body of science targeted to realize soft, smart matter via innovations in active mechanical metamaterials and proposes ongoing research targets that may deliver the promise of autonomous, engineered matter to full fruition.  more » « less
Award ID(s):
2054970
PAR ID:
10446371
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
7
Issue:
18
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Actin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein. Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials. 
    more » « less
  2. Photonic technologies continue to drive the quest for new optical materials with unprecedented responses. A major frontier in this field is the exploration of nonlocal (spatially dispersive) materials, going beyond the local, wavevector-independent assumption traditionally adopted in optical material modeling. The growing interest in plasmonic, polaritonic, and quantum materials has revealed naturally occurring nonlocalities, emphasizing the need for more accurate models to predict and design their optical responses. This has major implications also for topological, nonreciprocal, and time-varying systems based on these material platforms. Beyond natural materials, artificially structured materials—metamaterials and metasurfaces—can provide even stronger and engineered nonlocal effects, emerging from long-range interactions or multipolar effects. This is a rapidly expanding area in the field of photonic metamaterials, with open frontiers yet to be explored. In metasurfaces, in particular, nonlocality engineering has emerged as a powerful tool for designing strongly wavevector-dependent responses, enabling enhanced wavefront control, spatial compression, multifunctional devices, and wave-based computing. Furthermore, nonlocality and related concepts play a critical role in defining the ultimate limits of what is possible in optics, photonics, and wave physics. This Roadmap aims to survey the most exciting developments in nonlocal photonic materials and metamaterials, highlight new opportunities and open challenges, and chart new pathways that will drive this emerging field forward—toward new scientific discoveries and technological advancements. 
    more » « less
  3. Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g. , the design of smarter materials, tissue engineering for biomedicine and in guiding active matter. 
    more » « less
  4. Martin Bazant (Ed.)
    The collective motion of synthetic active colloids is an emerging area of research in soft matter physics and is important both as a platform for fundamental studies ranging from non-equilibrium statistical mechanics to the basic principles of self-organization, emergent phenomena, and assembly underlying life, as well as applications in biomedicine and metamaterials. The potentially transformative nature of the field over the next decade and beyond is a topic of critical research importance. Electrokinetic active colloids represent an extremely flexible platform for the investigation and modulation of collective behavior in active matter. Here, we review progress in the past five years in electrokinetic active systems and related topics in active matter with important fundamental research and applicative potential to be investigated using electrokinetic systems. 
    more » « less
  5. Abstract The properties of materials and structures typically remain fixed after being designed and manufactured. There is a growing interest in systems with the capability of altering their behaviors without changing geometries or material constitutions, because such reprogrammable behaviors could unlock multiple functionalities within a single design. We introduce an optimization-driven approach, based on multi-objective magneto-mechanical topology optimization, to design magneto-active metamaterials and structures whose properties can be seamlessly reprogrammed by switching on and off the external stimuli fields. This optimized material system exhibits one response under pure mechanical loading, and switches to a distinct response under joint mechanical and magnetic stimuli. We discover and experimentally demonstrate magneto-mechanical metamaterials and metastructures that realize a wide range of reprogrammable responses, including multi-functional actuation responses, adaptable snap-buckling behaviors, switchable deformation modes, and tunable bistability. The proposed approach paves the way for promising applications such as magnetic actuators, soft robots, and energy harvesters. 
    more » « less