Orsay virus infection in the nematode
Cleavage under targets and release using nuclease (CUT&RUN) is a recently developed chromatin profiling technique that uses a targeted micrococcal nuclease cleavage strategy to obtain high‐resolution binding profiles of protein factors or to map histones with specific post‐translational modifications. Due to its high sensitivity, CUT&RUN allows quality binding profiles to be obtained with only a fraction of the starting material and sequencing depth typically required for other chromatin profiling techniques such as chromatin immunoprecipitation. Although CUT&RUN has been widely adopted in multiple model systems, it has rarely been utilized in
- PAR ID:
- 10446383
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Caenorhabditis elegans presents an opportunity to study host‐virus interactions in an easily culturable, whole‐animal host. Previously, a major limitation ofC. elegans as a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen,C. elegans has emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability ofC. elegans enables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection ofC. elegans , and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.Basic Protocol 1 : Preparation of Orsay virus filtrateSupport Protocol : SynchronizeC. elegans development by bleachingBasic Protocol 2 : Orsay virus infectionBasic Protocol 3 : Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT‐PCRBasic Protocol 4 : Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensityBasic Protocol 5 : Immunofluorescent labeling of dsRNA in virus‐infected intestinal tissue -
Abstract Glycosaminoglycans (GAGs) are linear polysaccharides found in a variety of organisms. GAGs contribute to biochemical pathway regulation, cell signaling, and disease progression. GAG sequence information is imperative for determining structure‐function relationships. Recent advances in electron‐activation techniques paired with high‐resolution mass spectrometry allow for full sequencing of GAG structures. Electron detachment dissociation (EDD) and negative electron transfer dissociation (NETD) are two electron‐activation methods that have been utilized for GAG characterization. Both methods produce an abundance of informative glycosidic and cross‐ring fragment ions without producing a high degree of sulfate decomposition. Here, we provide detailed protocols for using EDD and NETD to sequence GAG chains. In addition to protocols directly involving performing these MS/MS methods, protocols include sample preparation, method development, internal calibration, and data analysis. © 2021 Wiley Periodicals LLC.
This article was corrected on 27 July 2022. See the end of the full text for details.
Basic Protocol 1 : Preparation of glycosaminoglycan samplesBasic Protocol 2 : FTICR method developmentBasic Protocol 3 : Internal calibration with NaTFABasic Protocol 4 : Electron Detachment Dissociation (EDD) of GAG samplesBasic Protocol 5 : Negative electron transfer dissociation (NETD) of GAG samplesBasic Protocol 6 : Analysis of MS/MS data -
Abstract Long read sequencing technologies now allow high‐quality sequencing of RNAs (or their cDNAs) that are hundreds to thousands of nucleotides long. Long read sequences of nascent RNA provide single‐nucleotide‐resolution information about co‐transcriptional RNA processing events—e.g., splicing, folding, and base modifications. Here, we describe how to isolate nascent RNA from mammalian cells through subcellular fractionation of chromatin‐associated RNA, as well as how to deplete poly(A)+RNA and rRNA, and, finally, how to generate a full‐length cDNA library for use on long read sequencing platforms. This approach allows for an understanding of coordinated splicing status across multi‐intron transcripts by revealing patterns of splicing or other RNA processing events that cannot be gained from traditional short read RNA sequencing. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Subcellular fractionationBasic Protocol 2 : Nascent RNA isolation and adapter ligationBasic Protocol 3 : cDNA amplicon preparation -
Abstract Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMs
in vivo . This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thaliana that can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC.Basic Protocol 1 : Nuclear isolation and histone acid extractionBasic Protocol 2 : Peptide labeling, digestion, and desaltingBasic Protocol 3 : Histone HPLC‐MS/MS and data analysis -
Abstract Visualization of gene products in
Caenorhabditis elegans has provided insights into the molecular and biological functions of many novel genes in their native contexts. Single‐molecule fluorescencein situ hybridization (smFISH) and immunofluorescence (IF) enable the visualization of the abundance and localization of mRNAs and proteins, respectively, allowing researchers to ultimately elucidate the localization, dynamics, and functions of the corresponding genes. Whereas both smFISH and immunofluorescence have been foundational techniques in molecular biology, each protocol poses challenges for use in theC. elegans embryo. smFISH protocols suffer from high initial costs and can photobleach rapidly, and immunofluorescence requires technically challenging permeabilization steps and slide preparation. Most importantly, published smFISH and IF protocols have predominantly been mutually exclusive, preventing the exploration of relationships between an mRNA and a relevant protein in the same sample. Here, we describe protocols to perform immunofluorescence and smFISH inC. elegans embryos either in sequence or simultaneously. We also outline the steps to perform smFISH or immunofluorescence alone, including several improvements and optimizations to existing approaches. These protocols feature improved fixation and permeabilization steps to preserve cellular morphology while maintaining probe and antibody accessibility in the embryo, a streamlined, in‐tube approach for antibody staining that negates freeze‐cracking, a validated method to perform the cost‐reducing single molecule inexpensive FISH (smiFISH) adaptation, slide preparation using empirically determined optimal antifade products, and straightforward quantification and data analysis methods. Finally, we discuss tricks and tips to help the reader optimize and troubleshoot individual steps in each protocol. Together, these protocols simplify existing workflows for single‐molecule RNA and protein detection. Moreover, simultaneous, high‐resolution imaging of proteins and RNAs of interest will permit analysis, quantification, and comparison of protein and RNA distributions, furthering our understanding of the relationship between RNAs and their protein products or cellular markers in early development. © 2021 Wiley Periodicals LLC.Basic Protocol 1 : Sequential immunofluorescence and single‐molecule fluorescencein situ hybridizationAlternate Protocol : Abbreviated protocol for simultaneous immunofluorescence and single‐molecule fluorescencein situ hybridizationBasic Protocol 2 : Simplified immunofluorescence inC. elegans embryosBasic Protocol 3 : Single‐molecule fluorescencein situ hybridization or single‐molecule inexpensive fluorescencein situ hybridization