skip to main content


Title: A Physical Interpretation of Asymmetric Growth and Decay of the Geomagnetic Dipole Moment
Abstract

Observations of relative paleointensity reveal several forms of asymmetry in the time dependence of the virtual axial dipole moment (VADM). Slow decline of the VADM into a reversal is often followed by a more rapid rise back to a quasi‐steady state. Asymmetry is also observed in trends of VADM during times of stable polarity. Trends of increasing VADM over time intervals of a few 10s of kyr are more intense and less frequent than decreasing trends. We examine the origin of this behavior using stochastic models. The usual (Langevin) model can account for asymmetries during reversals, but it cannot reproduce the observed asymmetry in trends during stable polarity. Better agreement is achieved with a different class of stochastic models in which the dipole is generated by a series of impulsive events in time. The timing of each event occurs randomly as a Poisson process and the amplitude is also randomly distributed. Predicted trends replicate the observed asymmetry when the generation events are large and the recurrence time is long (typically longer than 3 kyr). Large and infrequent generation events argue against dipole generation by small‐scale turbulent flow. Instead, the observations favor a mechanism that relies on expulsion of poloidal magnetic field from the core.

 
more » « less
NSF-PAR ID:
10446388
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temporal trends in the paleomagnetic dipole moment exhibit the property of positive skewness. On average, positive trends are larger and occur less frequently than negative trends over timescales of several tens of kyr. We explore the origin of this property using numerical geodynamo models. A suite of models reveals that skewness arises for a restricted set of boundary conditions. Models driven by heat flow at the top and bottom boundaries exhibit very little skewness, whereas models driven solely by heat flow on the lower boundary produce significant positive skewness. Further increases in skewness occur in the presence of thermal stratification at the top of the core. The level of skewness in the geodynamo models is correlated with estimates of upwelling near the core‐mantle boundary. Sustained upwelling is expected to increase magnetic‐flux expulsion, contributing to higher levels of skewness. Similar behavior is recovered from stochastic models in which the dipole is generated by a random series of cyclonic convection events. Skewness in the stochastic models is quantitatively similar to estimates from the geodynamo models when the average recurrence time of the convection events is 100 years. Extending the stochastic models to the paleomagnetic field implies a longer recurrence time of 1,000 years or more. We interpret this recurrence time in terms of the timing of flux‐expulsion events rather than individual convective events. Abrupt increases in the dipole moment from flux expulsion can produce skewed trends on timescales of tens of kyr.

     
    more » « less
  2. Abstract

    The historical trend in the axial dipole is sufficient to reverse the field in less than 2 kyr. Assessing the prospect of an imminent polarity reversal depends on the probability of sustaining the historical trend for long enough to produce a reversal. We use a stochastic model to predict the variability of trends for arbitrary time windows. Our predictions agree well with the trends computed from paleomagnetic models. Applying these predictions to the historical record shows that the current trend is likely due to natural variability. Furthermore, an extrapolation of the current trend for the next 1 to 2 kyr is highly unlikely. Instead, we compute the trend and time window needed to reverse the field with a specified probability. We find that the dipole could reverse in the next 20 kyr with a probability of 2%.

     
    more » « less
  3. Abstract

    Fluctuations in the geomagnetic field occur over a broad range of timescales. Short‐period fluctuations are called secular variation, whereas excursions and reversals are viewed as anomalous transient events. An open question is whether distinct mechanisms are required to account for these different forms of variability. Clues are sought in trendsbof the axial dipole moment from six time‐dependent geomagnetic field models. Variability inbhas a well‐defined dependence on the time interval (or window) for the trend. The variance ofbreveals a simple relationship to trends during excursions and reversals. This connection hints at a link between reversals, excursions and secular variation. Stochastic models exhibit a similar behavior in response to random fluctuations in dipole generation. We find that excursions, reversals and secular variation can be distinguished on the basis of trend durations rather than differences in the underlying physical process. While this analysis does not rule out distinct physical mechanisms, the paleomagnetic observations suggest that such distinctions are not required.

     
    more » « less
  4. The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider. 
    more » « less
  5. The Ediacaran Period marks a pivotal time in geodynamo evolution when the geomagnetic field is thought to approach the weak state where kinetic energy exceeds magnetic energy, as manifested by an extremely high frequency of polarity reversals, high secular variation, and an ultralow dipole field strength. However, how the geodynamo transitioned from this state into one with more stable field behavior is unknown. Here, we address this issue through a high-resolution magnetostratigraphic investigation of the ~494.5 million-year-old Jiangshanian Global Standard Stratotype and Point (GSSP) section in South China. Our paleomagnetic results document zones with rapid reversals, stable polarity and a ~80 thousand-year-long interval without a geocentric axial dipole field. From these changes, we suggest that for most of the Cambrian, the solid inner core had not yet grown to a size sufficiently large to stabilize the geodynamo. This unusual field behavior can explain paleomagnetic data used to define paradoxical true polar wander, supporting instead the rotational stability of the solid Earth during the great radiation of life in the Cambrian. 
    more » « less