skip to main content


Title: Specificity of California mouse pup vocalizations in response to olfactory stimuli
Abstract

To investigate flexibility in vocal signaling by rodent pups, we examined whether olfactory stimuli influence characteristics of pup calls and how these calls may be affected by sex and litter size in California mice (Peromyscus californicus). Pups were isolated and recorded during a 3‐min baseline period followed by a 5‐min exposure to bedding containing scent from their home cage, scent from the home cage of an unfamiliar family, coyote urine, or no scent (control). Latency to call, call rate, and call characteristics (duration, frequency, and amplitude) were compared between the baseline and scent‐exposure periods and among olfactory conditions. Compared with the control condition, pups from two‐pup litters called more quietly when exposed to odor from a predator, whereas pups from three‐pup litters called more loudly. Additionally, pups showed nonsignificant tendencies to reduce call rates in response to odors from their home cage and to increase call rates when exposed to predator urine. Last, males produced higher‐frequency calls and more ultrasonic vocalizations than females. These results indicate that pup calling behavior in this species can be influenced by acute olfactory stimuli as well as litter size and sex. The flexibility of pup calling in response to these three variables potentially increases the communication value of pup calls and helps shape the parents’ responses.

 
more » « less
NSF-PAR ID:
10446391
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Developmental Psychobiology
Volume:
64
Issue:
4
ISSN:
0012-1630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transition to motherhood in mammals is marked by changes in females’ perception of and responsiveness to sensory stimuli from infants. Our understanding of maternally induced sensory plasticity relies most heavily on studies in uniparental, promiscuous house mice and rats, which may not be representative of rodent species with different life histories. We exposed biparental, monogamous California mouse (Peromyscus californicus) mothers and ovariectomized virgin females to one of four acoustic and olfactory stimulus combinations (Control: clean cotton and white noise; Call: clean cotton and pup vocalizations; Odor: pup-scented cotton and white noise; Call + Odor: pup-scented cotton and pup vocalizations) and quantified females’ behavior and Fos expression in select brain regions. Behavior did not differ between mothers and ovariectomized virgins. Among mothers, however, those exposed to the Control condition took the longest to sniff the odor stimulus, and mothers exposed to the Odor condition were quicker to sniff the odor ball compared to those in the Call condition. Behavior did not differ among ovariectomized virgins exposed to the different conditions. Fos expression differed across conditions only in the anterior hypothalamic nucleus (AHN), which responds to aversive stimuli: among mothers, the Control condition elicited the highest AHN Fos and Call + Odor elicited the lowest. Among ovariectomized virgin fe- males, Call elicited the lowest Fos in the AHN. Thus, reproductive status in California mice alters females’ behavioral responses to stimuli from pups, especially odors, and results in the inhibition of defense circuitry in response to pup stimuli. 
    more » « less
  2. Abstract

    Recolonization of predators to their former ranges is becoming increasingly prevalent. Such recolonization places predators among their prey once again; the latter having lived without predation (from such predators) for a considerable time. This renewed coexistence creates opportunities to explore predation ecology at both fundamental and applied levels. We used a paired experimental design to investigate white‐tailed deer risk allocation in the Upper and Lower Peninsulas (UP and LP) in Michigan, USA. Wolves are functionally absent in the LP, while deer in the UP coexist with a re‐established wolf population. We treated 15 sites each in UP and LP with wolf olfactory cues and observed deer vigilance, activity, and visitation rates at the interface of habitat covariates using remote cameras. Such a paired design across wolf versus no‐wolf areas allowed us to examine indirect predation effects while accounting for confounding parameters such as the presence of other predators and human activity. While wolf urine had no effect across most metrics in both UP and LP, we observed differences in deer activity in areas with versus without wolves. Sites treated with wolf urine in the UP showed a reduction in crepuscular deer activity, compared to control/novel‐scent treated sites. Furthermore, we observed a strong positive effect of vegetation cover on deer vigilance in these sites. This indicates that simulated predator cues likely affect deer vigilance more acutely in denser habitats, which presumably facilitates predation success. Such responses were however absent among deer in the LP that are presumably naïve toward wolf predation. Where human and non‐human predators hunt shared prey, such as in Michigan, predators may constrain human hunting success by increasing deer vigilance. Hunters may avoid such exploitative competition by choosing hunting/bait sites located in open areas. Our results pertaining to fundamental predation ecology have strong applied implications that can promote human–predator coexistence.

     
    more » « less
  3. Katydids produce sound for signaling and communication by stridulation of the tegmina. Unlike crickets, most katydids are known to sing at ultrasonic frequencies. This has drawn interest in the investigation of the biophysics of ultrasonic sound production, detection, evolution, and ecology (including predator–prey interactions) of these katydids. However, most of these studies are based on species from the Neotropics, while little is known about katydid species from the hyperdiverse region of Southeast Asia. To address this, a concerted effort to document, record, and describe the calling songs of Southeast Asian katydids, especially species that call at ultrasonic frequencies, was made. A study spanning two years (2018–2020) in the Malay Peninsula (Singapore and Malaysia), Borneo (Brunei Darussalam and Sabah), and the Philippines revealed previously unknown calls of 24 katydid species from four subfamilies. The calling songs of Southeast Asian katydid species are highly diversified in terms of time and frequency. Call structure can range from isolated syllables (e.g.,Holochlora), continuous trills (e.g.,Axylus philippinus), to short pulse-trains (e.g.,Euanisous teuthroides) and complex echemes (e.g.,Conocephalusspp.), with 87.5% of species having ultrasonic peak frequencies and 12.5% being considered extreme ultrasonic callers (peak frequency >40 kHz). The call spectrum ranges from tonal (e.g., spectral entropy is 6.8 inCasignetasp. 2) to resonant (entropy is 8.8 inConocephalus cognatus). Of the 24 species whose calls are described here, we imaged and described the sound-producing structures of 18. This study provides a preliminary overview of the acoustic diversity of katydids in Southeast Asia, and the authors hope to inspire further investigation into the bioacoustics of little-known katydids from these areas. Amassing a database of calling songs and sound-producing organ illustrations from different species is important to address taxonomic impediments while advancing our knowledge about the bioacoustics of Southeast Asian katydids.

     
    more » « less
  4. Rosenfeld, Cheryl S. (Ed.)
    Maternal-offspring communication and care are essential for offspring survival. Oxytocin (OXT) is known for its role in initiation of maternal care, but whether OXT can rapidly influence maternal behavior or ultrasonic vocalizations (USVs; above 50 kHz) has not been examined. To test for rapid effects of OXT, California mouse mothers were administered an acute intranasal (IN) dose of OXT (0.8 IU/kg) or saline followed by a separation test with three phases: habituation with pups in a new testing chamber, separation via a wire mesh, and finally reunion with pups. We measured maternal care, maternal USVs, and pup USVs. In mothers, we primarily observed simple sweep USVs, a short downward sweeping call around 50 kHz, and in pups we only observed pup whines, a long call with multiple harmonics ranging from 20 kHz to 50 kHz. We found that IN OXT rapidly and selectively enhanced the normal increase in maternal simple sweep USVs when mothers had physical access to pups (habituation and reunion), but not when mothers were physically separated from pups. Frequency of mothers’ and pups’ USVs were correlated upon reunion, but IN OXT did not influence this correlation. Finally, mothers given IN OXT showed more efficient pup retrieval/carrying and greater total maternal care upon reunion. Behavioral changes were specific to maternal behaviors (e.g. retrievals) as mothers given IN OXT did not differ from controls in stress-related behaviors (e.g. freezing). Overall, these findings highlight the rapid effects and context-dependent effect a single treatment with IN OXT has on both maternal USV production and offspring care. 
    more » « less
  5. Abstract

    Defending offspring incurs temporal and energetic costs and can be dangerous for the parents. Accordingly, the intensity of this costly behavior should reflect the perceived risk to the reproductive output. When facing costly brood parasitism by brown‐headed cowbirds (Molothrus ater), where cowbirds lay eggs in heterospecific nests and cause the hosts to care for their young, yellow warblers (Setophaga petechia) use referential “seet” calls to warn their mates of the parasitic danger. Yellow warblers of both sexes produce this call only in response to cowbirds or seet‐calling conspecifics. Seet calls are mainly produced during the laying and incubation stages of breeding, when risk of brood parasitism is highest, rather than during the nestling stage. On the other hand, general alarm calls (chips) are produced throughout the nesting cycle and are also used in conspecific interactions unrelated to nesting. We hypothesized that context shapes responses prior to breeding as well, such that yellow warblers without a mate and active nest would be less likely to respond to playbacks that simulate brood parasitism risk. To test this hypothesis, we presented playbacks of two nest threats, cowbirds (brood parasite) and blue jays (Cyanocitta cristata; nest predator), on territories of unmated male warblers (unpaired) and male warblers with a known mate (paired). We found that unpaired males were unresponsive toward playbacks indicating nest threats, whereas paired males were significantly more aggressive and vocal toward these playbacks compared to control playbacks. However, both paired and unpaired males were vocally responsive toward chip calls, which are informative for males regardless of pairing status. Male yellow warblers appear to adjust their responses during the earliest stages of breeding depending on the contextual relevance of specific threat stimuli, and together with prior studies, our work further supports that referential seet calls are associated with stage‐specific risk of brood parasitism.

     
    more » « less