skip to main content


Title: Tuning Hydrogel Adhesivity and Degradability to Model the Influence of Premetastatic Niche Matrix Properties on Breast Cancer Dormancy and Reactivation
Abstract

Dormant, disseminated tumor cells (DTCs) can persist for decades in secondary tissues before being reactivated to form tumors. The properties of the premetastatic niche can influence the DTC phenotype. To better understand how matrix properties of premetastatic niches influence DTC behavior, three hydrogel formulations are implemented to model a permissive niche and two nonpermissive niches. Poly(ethylene glycol) (PEG)‐based hydrogels with varying adhesivity ([RGDS]) and degradability ([N‐vinyl pyrrolidinone]) are implemented to mimic a permissive niche with high adhesivity and degradability and two nonpermissive niches, one with moderate adhesivity and degradability and one with no adhesivity and high degradability. The influence of matrix properties on estrogen receptor positive (ER+) breast cancer cells (MCF7s) is determined via a multimetric analysis. MCF7s cultured in the permissive niche adopted a growth state, while those in the nonpermissive niche with reduced adhesivity and degradability underwent tumor mass dormancy. Complete removal of adhesivity while maintaining high degradability induced single cell dormancy. The ability to mimic reactivation of dormant cells through a dynamic increase in [RGDS] is also demonstrated. This platform provides the capability of inducing growth, dormancy, and reactivation of ER+ breast cancer and can be useful in understanding how premetastatic niche properties influence cancer cell fate.

 
more » « less
PAR ID:
10446444
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Biology
Volume:
6
Issue:
5
ISSN:
2701-0198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA‐MB‐231 parental line and three organotropic sublines BoM‐1833 (bone‐tropic), LM2‐4175 (lung‐tropic), and BrM2a‐831 (brain‐tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)‐based hydrogel formulations composed of proteolytically degradable PEG, integrin‐ligating RGDS, and the non‐degradable crosslinker N‐vinyl pyrrolidone. Dormancy‐associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated‐ERK and ‐p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel‐induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung‐tropic lines and balanced tumor mass dormancy in bone‐ and brain‐tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ‐tropism synergistically regulate cancer cell phenotype and dormancy.

     
    more » « less
  2. null (Ed.)
    Breast cancer cells can metastasize either as single cells or as clusters to distant organs from the primary tumor site. Cell clusters have been shown to possess higher metastatic potential compared to single cells. The organ microenvironment is critical in regulating the ultimate phenotype, specifically, the dormant versus proliferative phenotypes, of these clusters. In the context of breast cancer brain metastasis (BCBM), tumor cell cluster–organ microenvironment interactions are not well understood, in part, due to the lack of suitable biomimetic in vitro models. To address this need, herein, we report a biomaterial-based model, utilizing hyaluronic acid (HA) hydrogels with varying stiffnesses to mimic the brain microenvironment. Cell spheroids were used to mimic cell clusters. Using 100–10 000 MDA-MB-231Br BCBM cells, six different sizes of cell spheroids were prepared to study the impact of cluster size on dormancy. On soft HA hydrogels (∼0.4 kPa), irrespective of spheroid size, all cell spheroids attained a dormant phenotype, whereas on stiff HA hydrogels (∼4.5 kPa), size dependent switch between the dormant and proliferative phenotypes was noted ( i.e. , proliferative phenotype ≥5000 cell clusters < dormant phenotype), as tested via EdU and Ki67 staining. Furthermore, we demonstrated that the matrix stiffness driven dormancy was reversible. Such biomaterial systems provide useful tools to probe cell cluster–matrix interactions in BCBM. 
    more » « less
  3. Abstract

    Breast cancer is a leading cause of global cancer‐related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab‐derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long‐term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.

     
    more » « less
  4. Abstract

    Approximately 90% of breast cancer related mortalities are due to metastasis to distant organs. At the metastatic sites, cancer cells are capable of evading death by exhibiting cellular or mass dormancy. However, the mechanisms involved in attaining dormancy at the metastatic site are not well understood. This is partly due to the lack of experimental models to study metastatic site‐specific interactions, particularly in the context of brain metastatic breast cancer (BMBC). Herein, an in vitro hyaluronic acid (HA) hydrogel‐based model is developed to study mass dormancy in BMBC. HA hydrogels with a stiffness of ≈0.4 kPa are utilized to mimic the brain extracellular matrix. MDA‐MB‐231Br or BT474Br3 BMBC spheroids are prepared and cultured on top of HA hydrogels or in suspension for 7 days. HA hydrogel induced a near mass dormant state in spheroids by achieving a balance between proliferating and dead cells. In contrast, these spheroids displayed growth in suspension cultures. The ratio of %p‐ERK to %p‐p38 positive cells is significantly lower in HA hydrogels compared to suspension cultures. Further, it is demonstrated that hydrogel induced mass dormant state is reversible. Overall, such models provide useful tools to study dormancy in BMBC and could be employed for drug screening.

     
    more » « less
  5. Engineered three-dimensional (3D) cell culture models can accelerate drug discovery, and lead to new fundamental insights in cell–cell, cell–extracellular matrix (ECM), and cell–biomolecule interactions. Existing hydrogel or scaffold-based approaches for generating 3D tumor models do not possess significant tunability and possess limited scalability for high throughput drug screening. We have developed a new library of hydrogels, called Amikagels, which are derived from the crosslinking of amikacin hydrate (AH) and poly(ethylene glycol) diglycidyl ether (PEGDE). Here we describe the use of Amikagels for generating 3D tumor microenvironments (3DTMs) of breast cancer cells. Biological characteristics of these breast cancer 3DTMs, such as drug resistance and hypoxia were evaluated and compared to those of two-dimensional (2D) monolayer cultures. Estrogen receptor (ER) positive breast cancer 3DTMs formed on Amikagels were more dormant compared to their respective 2D monolayer cultures. Relative to their respective 2D cultures, breast cancer 3DTMs were resistant to cell death induced by mitoxantrone and doxorubicin, which are commonly used chemotherapeutic drugs in cancer, including breast cancer. The drug resistance seen in 3DTMs was correlated with hypoxia seen in these cultures but not in 2D monolayer cultures. Inhibition of Mucin 1 (MUC1), which is overexpressed in response to hypoxia, resulted in nearly complete cell death of 2D monolayer and 3DTMs of breast cancer. Combination of an ER stress inducer and MUC1 inhibition further enhanced cell death in 2D monolayer and 3DTMs. Taken together, this study shows that the Amikagel platform represents a novel technology for the generation of physiologically relevant 3DTMs in vitro and can serve as a platform to discover novel treatments for drug-resistant breast cancer.

     
    more » « less