Abstract We present the localization and host galaxies of one repeating and two apparently nonrepeating fast radio bursts (FRBs). FRB 20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at z = 0.3304. FRB20191228A and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at z = 0.2430 and z = 0.3688, respectively. We combine these with 13 other well-localized FRBs in the literature, and analyze the host galaxy properties. We find no significant differences in the host properties of repeating and apparently nonrepeating FRBs. FRB hosts are moderately star forming, with masses slightly offset from the star-forming main sequence. Star formation and low-ionization nuclear emission-line region emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (more than 95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae and short gamma-ray bursts hosts, and the spatial offset (from galaxy centers) of FRBs is mostly inconsistent with that of the Galactic neutron star population (95% confidence). The spatial offsets of FRBs (normalized to the galaxy effective radius) also differ from those of globular clusters in late- and early-type galaxies with 95% confidence. 
                        more » 
                        « less   
                    
                            
                            The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors
                        
                    
    
            Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3M⊙yr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10446446
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 80
- Size(s):
- Article No. 80
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the host galaxies of four apparently nonrepeating fast radio bursts (FRBs), FRB 20181223C, FRB 20190418A, FRB 20191220A, and FRB 20190425A, reported in the first Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) catalog. Our selection of these FRBs is based on a planned hypothesis testing framework where we search all CHIME/FRB Catalog-1 events that have low extragalactic dispersion measure (<100 pc cm−3), with high Galactic latitude (∣b∣ > 10°) and saved baseband data. We associate the selected FRBs with galaxies with moderate to high star formation rates located at redshifts between 0.027 and 0.071. We also search for possible multimessenger counterparts, including persistent compact radio and gravitational-wave sources, and find none. Utilizing the four FRB hosts from this study, along with the hosts of 14 published local Universe FRBs (z< 0.1) with robust host association, we conduct an FRB host demographics analysis. We find all 18 local Universe FRB hosts in our sample to be spirals (or late-type galaxies), including the host of FRB 20220509G, which was previously reported to be elliptical. Using this observation, we scrutinize proposed FRB source formation channels and argue that core-collapse supernovae are likely the dominant channel to form FRB sources. Moreover, we infer no significant difference in the host properties of repeating and apparently nonrepeating FRBs in our local Universe FRB host sample. Finally, we find the burst rates of these four apparently nonrepeating FRBs to be consistent with those of the sample of localized repeating FRBs observed by CHIME/FRB. Therefore, we encourage further monitoring of these FRBs with more sensitive radio telescopes.more » « less
- 
            Abstract The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshiftz = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31M⊙yr−1, the specific star formation rate <10−11.9yr−1classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars.more » « less
- 
            Abstract We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108M⊙and an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs.more » « less
- 
            Abstract We present a sample of nine fast radio bursts (FRBs) from which we derive magnetic field strengths of the host galaxies represented by normal,z< 0.5 star-forming galaxies with stellar massesM*≈ 108–1010.5M⊙. We find no correlation between the FRB rotation measure (RM) and redshift, which indicates that the RM values are due mostly to the FRB host contribution. This assertion is further supported by a significant positive correlation (Spearman test probabilityPS< 0.05) found between the RM and the estimated host dispersion measure (DMhost; with Spearman rank correlation coefficientrS= +0.75). For these nine galaxies, we estimate their magnetic field strengths projected along the sight line ∣B∥∣, finding a low median value of 0.5μG. This implies the magnetic fields of our sample of hosts are weaker than those characteristic of the solar neighborhood (≈6μG), but relatively consistent with a lower limit on the observed range of ≈2–10μG for star-forming disk galaxies, especially as we consider reversals in theB-field, and that we are only probing B∥. We compare to RMs from simulated galaxies of the Auriga project—magneto-hydrodynamic cosmological zoom simulations—and find that the simulations predict the observed values to within a 95% confidence interval. Upcoming FRB surveys will provide hundreds of new FRBs with high-precision localizations, RMs, and imaging follow-up to support further investigation into the magnetic fields of a diverse population ofz< 1 galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
