skip to main content


Title: Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events
Abstract

Extreme climatic events (ECEs) and predator removal represent some of the most widespread stressors to ecosystems. Though species interactions can alter ecological effects of climate change (and vice versa), it is less understood whether, when and how predator removal can interact with ECEs to exacerbate their effects. Understanding the circumstances under which such interactions might occur is critical because predator loss is widespread and ECEs can generate rapid phase shifts in ecosystems which can ultimately lead to tropicalization.

Our goal was to determine whether loss of predation risk may be an important mechanism governing ecosystem responses to extreme events, and whether the effects of such events, such as tropicalization, can occur even when species range shifts do not. Specifically, our goal was to experimentally simulate the loss of an apex predator, the tiger sharkGaleocerdo cuviereffects on a recently damaged seagrass ecosystem of Shark Bay, Australia by applying documented changes to risk‐sensitive grazing of dugongDugong dugonherbivores.

Using a 16‐month‐field experiment established in recently disturbed seagrass meadows, we used previous estimates of risk‐sensitive dugong foraging behaviour to simulate altered risk‐sensitive foraging densities and strategies of dugongs consistent with apex predator loss, and tracked seagrass responses to the simulated grazing.

Grazing treatments targeted and removed tropical seagrasses, which declined. However, like in other mixed‐bed habitats where dugongs forage, treatments also incidentally accelerated temperate seagrass losses, revealing that herbivore behavioural changes in response to predator loss can exacerbate ECE and promote tropicalization, even without range expansions or introductions of novel species.

Our results suggest that changes to herbivore behaviours triggered by loss of predation risk can undermine ecological resilience to ECEs, particularly where long‐lived herbivores are abundant. By implication, ongoing losses of apex predators may combine with increasingly frequent ECEs to amplify climate change impacts across diverse ecosystems and large spatial scales.

 
more » « less
NSF-PAR ID:
10446484
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
90
Issue:
9
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 2041-2052
Size(s):
["p. 2041-2052"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cattle and other livestock graze more than a quarter of the world's terrestrial area and are widely regarded to be drivers of global biodiversity declines. Studies often compare the effects of livestock presence/absence but, to our knowledge, no studies have tested for interactive effects between large wild herbivores and livestock at varying stocking rates on small‐bodied wild vertebrates.

    We investigated the effects of cattle stocking rates (none/moderate/high) on the diversity of wildlife 0.05–1,000 kg using camera traps at a long‐term exclosure experiment within a semi‐arid savanna ecosystem in central Kenya. In addition, by selectively excluding wild ‘mesoherbivores’ (50–1,000 kg) and ‘megaherbivores’ (>1,000 kg; elephant and giraffe), we tested whether the presence of these two wild herbivore guilds (collectively, ‘larger wild herbivores’) mediates the effect of cattle stocking rate on habitat use and diversity of ‘smaller wildlife’ (mammals ranging between 10 and 70 cm shoulder height and birds).

    Our results show that cattle enhance alpha diversity of smaller wildlife (with or without larger wild herbivore presence) and of all wildlife 0.05–1,000 kg (with or without megaherbivore presence), by altering vegetation structure. However, for smaller wildlife, this effect is less pronounced in the presence of larger wild herbivores, which also shorten grass. In the absence of cattle, mesoherbivore‐accessible sites showed higher alpha diversity of smaller wildlife than sites excluding mesoherbivores.

    Smaller wildlife habitat use was increased by high cattle stocking rates and wild mesoherbivores more in the presence of the other.

    Synthesis and applications. Our findings imply that grazing, whether by livestock or wildlife, can enhance local savanna wildlife diversity. The biodiversity benefits of localised increases in herbivory are likely to be due to shortened grass and associated visibility improvements (for predator avoidance/foraging). This suggests that land managers can increase local biodiversity by shortening grass, with wild or domestic herbivores (or both), at least in patches within a taller grass matrix.

     
    more » « less
  2. Abstract

    Savanna tree cover is dynamic due to disturbances such as fire and herbivory. Frequent fires can limit a key demographic transition from sapling to adult height classes in savanna trees. Saplings may be caught in a ‘fire trap’, wherein individuals repeatedly resprout following fire top‐kill events. Saplings only rarely escape the cycle by attaining a fire‐resistant height (e.g. taller than the minimum scorch height) during fire‐free intervals.

    Large mammalian herbivores also may trap trees in shorter size classes. Browsing herbivores directly limit sapling height, while grazing herbivores such as cattle facilitate sapling growth indirectly via grass removal. Experimental studies investigating how meso‐wildlife, megaherbivores and domestic livestock affect height of resprouts following fire are rare, but necessary for fully understanding how herbivory may reinforce (or counteract) the fire trap. In our study system, interactive fire–herbivore effects on transitions from sapling (<1 m) to adult tree (>1 m) height classes may be further influenced by plant defences, such as symbiotic ants.

    We used the Kenya Long‐term Exclosure Experiment (KLEE) to investigate how post‐fire resprout size of a widespread monodominant East African tree,Acacia drepanolobiumwas influenced by (a) herbivory by different combinations of cattle, meso‐wildlife (15–1,000 kg) and megaherbivores (>1,000 kg) and (b) the presence of acacia–ant mutualists that confer tree defences. We sampled height, stem length and ant occupancy of resprouts exposed to different herbivore combinations before and after controlled burns.

    Resprout height of saplings that were short prior to fire (<1 m) was reduced primarily by meso‐wildlife. Negative effects of elephants on post‐fire resprout height increased with pre‐fire tree size, suggesting that resprouts of the tallest trees (with the greatest potential to escape the fire trap cycle) were preferentially browsed and reduced in height by elephants. There were no significant cattle effects.

    Synthesis. We provide experimental evidence for two potential pathways through which large herbivores exert control over sapling escape from the fire trap: (a) post‐fire meso‐wildlife browsing of short (<1 m) resprouts and (b) elephant browsing of the largest size class of resprouts, which would otherwise be most likely to escape the fire trap.

     
    more » « less
  3. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Understanding how megaherbivores incorporate habitat features into their foraging behavior is key toward understanding how herbivores shape the surrounding landscape. While the role of habitat structure has been studied within the context of predator–prey dynamics and grazing behavior in terrestrial systems, there is a limited understanding of how structure influences megaherbivore grazing in marine ecosystems. To investigate the response of megaherbivores (green turtles) to habitat features, we experimentally introduced structure at two spatial scales in a shallow seagrass meadow in The Bahamas. Turtle density increased 50‐fold (to 311 turtles ha−1) in response to the structures, and turtles were mainly grazing and resting (low vigilance behavior). This resulted in a grazing patch exceeding the size of the experimental setup (242 m2), with reduced seagrass shoot density and aboveground biomass. After structure removal, turtle density decreased and vigilance increased (more browsing and shorter surfacing times), while seagrass within the patch partly recovered. Even at a small scale (9 m2), artificial structures altered turtle grazing behavior, resulting in grazing patches in 60% of the plots. Our results demonstrate that marine megaherbivores select habitat features as foraging sites, likely to be a predator refuge, resulting in heterogeneity in seagrass bed structure at the landscape scale.

     
    more » « less
  5. Abstract

    Resource selection is widely appreciated to be context‐dependent and shaped by both biological and abiotic factors. However, few studies have empirically assessed the extent to which selective foraging behaviour is dynamic and varies in response to environmental conditions for free‐ranging animal populations.

    Here, we assessed the extent that forage selection fluctuated in response to different environmental conditions for a free‐ranging herbivore, moose (Alces alces), in Isle Royale National Park, over a 10‐year period. More precisely, we assessed how moose selection for coniferous versus deciduous forage in winter varied between geographic regions and in relation to (a) the relative frequency of forage types in the environment (e.g. frequency‐dependent foraging behaviour), (b) moose abundance, (c) predation rate (by grey wolves) and (d) snow depth. These factors are potentially important for their influence on the energetics of foraging. We also built a series of food‐chain models to assess the influence of dynamic foraging strategies on the stability of food webs.

    Our analysis indicates that moose exhibited negative frequency dependence, by selectively exploiting rare resources. Frequency‐dependent foraging was further mediated by density‐dependent processes, which are likely to be predation, moose abundance or some combination of both. In particular, frequency dependence was weaker in years when predation risk was high (i.e. when the ratio of moose to wolves was relatively low). Selection for conifers was also slightly weaker during deep snow years.

    The food‐chain analysis indicates that the type of frequency‐dependent foraging strategy exhibited by herbivores had important consequences for the stability of ecological communities. In particular, the dynamic foraging strategy that we observed in the empirical analysis (i.e. negative frequency dependence being mediated by density‐dependent processes) was associated with more stable food web dynamics compared to fixed foraging strategies.

    The results of this study indicated that forage selection is a complex ecological process, varying in response to both biological (predation and moose density) and abiotic factors (snow depth) and over relatively small spatial scales (between regions). This study also provides a useful framework for assessing the influence of other aspects of foraging behaviour on the stability of food web dynamics.

     
    more » « less