skip to main content


Title: Mechanisms Driving Decadal Changes in the Carbonate System of a Coastal Plain Estuary
Abstract

Understanding decadal changes in the coastal carbonate system is essential for predicting how the health of these waters responds to anthropogenic drivers, such as changing atmospheric conditions and riverine inputs. However, studies that quantify the relative impacts of these drivers are lacking. In this study, the primary drivers of decadal trends in the surface carbonate system, and the spatiotemporal variability in these trends, are identified for a large coastal plain estuary: the Chesapeake Bay. Experiments using a coupled three‐dimensional hydrodynamic‐biogeochemical model highlight that, over the past three decades, the changes in the surface carbonate system of Chesapeake Bay have strong seasonal and spatial variability. The greatest surface pH and aragonite saturation state (ΩAR) reductions have occurred in the summer in the middle (mesohaline) Bay: −0.24 and −0.9 per 30 years, respectively, with increases in atmospheric CO2and reductions in nitrate loading both being primary drivers. Reductions in nitrate loading have a strong seasonal influence on the carbonate system, with the most pronounced decadal decreases in pH and ΩARoccurring during the summer when primary production is strongly dependent on nutrient availability. Increases in riverine total alkalinity and dissolved inorganic carbon have raised surface pH in the upper oligohaline Bay, while other drivers such as atmospheric warming and input of acidified ocean water through the Bay mouth have had comparatively minor impacts on the estuarine carbonate system. This work has significant implications for estuarine ecosystem services, which are typically most sensitive to surface acidification in the spring and summer seasons.

 
more » « less
NSF-PAR ID:
10446513
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
6
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the vulnerability of estuarine ecosystems to anthropogenic impacts requires a quantitative assessment of the dynamic drivers of change to the carbonate (CO2) system. Here we present new high‐frequency pH data from a moored sensor. These data are combined with discrete observations to create continuous time series of total dissolved inorganic carbon (TCO2), CO2partial pressure (pCO2), and carbonate saturation state. We present two deployments over the winter‐to‐spring transition in the lower York River (where it meets the Chesapeake Bay mainstem) in 2016/2017 and 2017/2018. TCO2budgets with daily resolution are constructed, and contributions from circulation, air‐sea CO2exchange, and biology are quantified. We find that TCO2is most strongly influenced by circulation and biological processes; pCO2and pH also respond strongly to changes in temperature. The system transitions from autotrophic to heterotrophic conditions multiple times during both deployments; the conventional view of a spring bloom and subsequent summer production followed by autumn and winter respiration may not apply to this region. Despite the dominance of respiration in winter and early spring, surface waters were undersaturated with respect to atmospheric CO2for the majority of both deployments with mean fluxes ranging from −9 to −5 mmol C·m−2·day−1. Deployments a year apart indicate that the seasonal transition in the CO2system differs significantly from one year to the next and highlights the necessity of sustained monitoring in dynamic nearshore environments.

     
    more » « less
  2. Abstract

    In shallow coastal shelves like the Mid‐Atlantic Bight (MAB), ocean acidification due to increased atmospheric carbon dioxide (CO2) is compounded by highly variable coastal processes including riverine freshwater inputs, nutrient loading, biogeochemical influence, coastal currents and water mass mixing, and seasonal transitions in physical parameters. Past deconstructions of carbonate system drivers in the MAB have focused on nearshore zones or single season data, and thus lack the spatial and temporal resolution required to assess impacts to important species occupying the shelf. Deconstructing highly resolved data collected during four seasonal Slocum glider deployments in the MAB, this study uses a Taylor Series decomposition to quantify the influence of temperature, salinity, biogeochemical activity, and water mass mixing on pH and aragonite saturation state from sea surface to bottom. Results show that water mass mixing and biogeochemical activity were the most significant drivers of the carbonate system in the MAB. Nearshore water was more acidic year‐round due to riverine freshwater input, but photosynthesis reduced acidity at certain depths and times. Water mass mixing increased acidity in bottom water on the shelf, particularly in summer. Gulf Stream intrusions at the shelf break during fall acted to mitigate acidification on the shelf in habitats occupied by carbonate‐bearing organisms. The relationships quantified here can be used to improve biogeochemical forecast models and determine habitat suitability for commercially important fin and shellfish species residing in the MAB.

     
    more » « less
  3. Abstract

    In estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2increases on estuarine pH. Long‐term (> 20 yr) surface water pH records from the USA's two largest estuaries, Chesapeake Bay (CB) and Neuse River Estuary‐Pamlico Sound (NRE‐PS) were examined to understand the relative importance of atmospheric forcing vs. local processes in controlling pH. At the estuaries’ heads, pH increases in CB and decreases in NRE‐PS were driven primarily by changing ratios of river alkalinity to dissolved inorganic carbon concentrations. In upper reaches of CB and middle reaches of the NRE‐PS, pH increases were associated with increases in phytoplankton biomass. There was no significant pH change in the lower NRE‐PS and only the polyhaline CB showed a pH decline consistent with ocean acidification. In both estuaries, interannual pH variability showed robust, positive correlations with chlorophylla(Chla) during the spring in mid to lower estuarine regions indicative of strong control by net phytoplankton production. During summer and fall, Chlaand pH negatively correlated in lower regions of both estuaries, given a shift toward heterotrophy driven by changes in phytoplankton community structure and increases in the load ratio of dissolved inorganic nitrogen to organic carbon. Tropical cyclones episodically depressed pH due to vertical mixing of CO2rich bottom waters and post‐storm terrestrial organic matter loading. Local processes we highlight represent a significant challenge for predicting future estuarine pH.

     
    more » « less
  4. Abstract

    Despite the important role of alkalinity in estuarine carbon cycling, the seasonal and decadal variability of alkalinity, particularly within multiple tidal tributaries of the same estuary, is poorly understood. Here we analyze more than 25,000 alkalinity measurements, mostly from the 1980s and 1990s, in the major tidal tributaries of the Chesapeake Bay, a large, coastal‐plain estuary of eastern North America. The long‐term means of alkalinity in tidal‐fresh waters vary by a factor of 6 among seven tidal tributaries, reflecting the alkalinity of nontidal rivers draining to these estuaries. At 25 stations, mostly in the Potomac River Estuary, we find significant long‐term increasing trends that exceed the trends in the nontidal rivers upstream of those stations. Box model calculations in the Potomac River Estuary indicate that the main cause of the estuarine trends is a declining alkalinity sink. The magnitude of this sink is consistent with a simple model of calcification by the invasive bivalveCorbicula fluminea. More generally, in tidal tributaries fed by high‐alkalinity nontidal rivers, alkalinity is consumed, with sinks ranging from 8% to 27% of the upstream input. In contrast, tidal tributaries that are fed by low‐alkalinity nontidal rivers have sources of alkalinity amounting to 34% to 171% of the upstream input. For a single estuarine system, the Chesapeake Bay has diverse alkalinity dynamics and can thus serve as a laboratory for studying the numerous processes influencing alkalinity among the world's estuaries.

     
    more » « less
  5. Abstract. Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018). 
    more » « less