We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.
Despite considerable community effort, there is no general set of equations to model long‐term landscape evolution. In order to determine a suitable set of landscape evolution process laws for a site where postglacial erosion has incised valleys up to 50 m deep, we generate a set of alternative models and perform a multimodel analysis. The most basic model we consider includes stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface‐water discharge proportional to drainage area. We systematically add one, two, or three elements of complexity to this model from one of four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. We apply methods of formal model analysis to the 37 alternative models. The global Method of Morris sensitivity analysis method is used to identify model input parameters that most and least strongly influence model outputs. Only a few parameters are identified as important, and this finding is consistent across two alternative model outputs: one based on a collection of topographic metrics and one that uses an objective function based on a topographic difference. Parameters that control channel erosion are consistently important, while hillslope diffusivity is important for only select model outputs. Uncertainty in initial and boundary conditions is associated with low sensitivity. Sensitivity analysis provides insight to model dynamics and is a critical step in using model analysis for mechanistic hypothesis testing in landscape evolution theory.
more » « less- NSF-PAR ID:
- 10446798
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 125
- Issue:
- 7
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Models of landscape evolution provide insight into the geomorphic history of specific field areas, create testable predictions of landform development, demonstrate the consequences of current geomorphic process theory, and spark imagination through hypothetical scenarios. While the last 4 decades have brought the proliferation of many alternative formulations for the redistribution of mass by Earth surface processes, relatively few studies have systematically compared and tested these alternative equations. We present a new Python package, terrainbento 1.0, that enables multi-model comparison, sensitivity analysis, and calibration of Earth surface process models. Terrainbento provides a set of 28 model programs that implement alternative transport laws related to four process elements: hillslope processes, surface-water hydrology, erosion by flowing water, and material properties. The 28 model programs are a systematic subset of the 2048 possible numerical models associated with 11 binary choices. Each binary choice is related to one of these four elements – for example, the use of linear or nonlinear hillslope diffusion. Terrainbento is an extensible framework: base classes that treat the elements common to all numerical models (such as input/output and boundary conditions) make it possible to create a new numerical model without reinventing these common methods. Terrainbento is built on top of the Landlab framework such that new Landlab components directly support the creation of new terrainbento model programs. Terrainbento is fully documented, has 100 % unit test coverage including numerical comparison with analytical solutions for process models, and continuous integration testing. We support future users and developers with introductory Jupyter notebooks and a template for creating new terrainbento model programs. In this paper, we describe the package structure, process theory, and software implementation of terrainbento. Finally, we illustrate the utility of terrainbento with a benchmark example highlighting the differences in steady-state topography between five different numerical models.
-
Abstract We investigated the potential causes of topographic asymmetry at Gabilan Mesa, CA, a site that exhibits large aspect‐dependent differences in hillslope gradients and microclimates. Competing hypotheses have been proposed to explain the asymmetry observed at Gabilan Mesa. One hypothesis states that different microclimates on opposing slopes are responsible for differences in runoff or soil strength, which generates asymmetric topography. A second hypothesis states that differences in sediment flux from opposing slopes causes southward lateral channel migration and oversteepening of north facing slopes. To test these hypotheses, we carried out numerical modeling experiments, terrain analysis, and field measurements. We also considered the role of initial tilting in causing the asymmetry. We found that saturated hydraulic conductivity is considerably lower on south facing slopes in one highly asymmetric basin. This is consistent with the hypothesis that aspect‐dependent runoff is responsible for the asymmetry. We also used cosmogenic radionuclide‐derived erosion rates and topographic characteristics at Gabilan Mesa to test predictions from numerical landscape evolution models that incorporate asymmetry‐forming mechanisms. The aspect‐dependent models reproduce the erosional and topographic characteristics of Gabilan Mesa better than the lateral channel migration model. We conclude that aspect‐dependent runoff is the most likely explanation for most of the topographic asymmetry at Gabilan Mesa. Our results do not rule out tilting as a possible influence on the initial development of asymmetry nor do they rule out the possibility that lateral channel migration has contributed to the asymmetry, but we suggest that tilting and lateral channel migration are not primarily responsible for it.
-
Abstract Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris‐flow incision rate formulations that produce morphology consistent with natural landscapes. In many landscapes, including the San Gabriel Mountains (SGM), California, steady‐state fluvial channel longitudinal profiles are concave‐up and exhibit a power‐law relationship between channel slope and drainage area. At low drainage areas, however, valley slopes become nearly constant. These topographic forms result in a characteristically curved slope‐area signature in log‐log space. Here, we use a one‐dimensional landform evolution model that incorporates debris‐flow erosion to reproduce the relationship between this curved slope‐area signature and erosion rate in the SGM. Topographic analysis indicates that the drainage area at which steepland valleys transition to fluvial channels correlates with measured erosion rates in the SGM, and our model results reproduce these relationships. Further, the model only produces realistic valley profiles when parameters that dictate the relationship between debris‐flow erosion, valley‐bottom slope, and debris‐flow depth are within a narrow range. This result helps place constraints on the mathematical form of a debris‐flow incision law. Finally, modeled fluvial incision outpaces debris‐flow erosion at drainage areas less than those at which valleys morphologically transition from near‐invariant slopes to concave profiles. This result emphasizes the critical role of debris‐flow incision for setting steepland form, even as fluvial incision becomes the dominant incisional process.
-
Abstract Large earthquakes can construct mountainous topography by inducing rock uplift but also erode mountains by causing landslides. Observations following the 2008 Wenchuan earthquake show that landslide volumes in some cases match seismically induced uplift, raising questions about how the actions of individual earthquakes accumulate to build topography. Here we model the two‐dimensional surface displacement field generated over a full earthquake cycle accounting for coseismic deformation, postseismic relaxation, landslide erosion, and erosion‐induced isostatic compensation. We explore the related volume balance across different seismotectonic and topographic conditions and revisit the Wenchuan case in this context. The ratio (Ω) between landslide erosion and uplift is most sensitive to parameters determining landslide volumes (particularly earthquake magnitude
M w , seismic energy source depth, and failure susceptibility, as well as the seismological factor responsible for triggering landslides), and is moderately sensitive to the effective elastic thickness of lithosphere,T e . For a specified magnitude, more erosive events (higher Ω) tend to occur at shallower depth, in thicker‐T e lithosphere, and in steeper, more landslide‐prone landscapes. For given landscape and seismotectonic conditions, the volumes of both landslides and uplift to first order positively scale withM w and seismic momentM o . However, higherM w earthquakes generate lower landslide and uplift volumes per unitM o , suggesting lower efficiency in the use of seismic energy to drive topographic change. With our model, we calculate the long‐term average seismic volume balance for the eastern Tibetan region and find that the net topographic effect of earthquakes in this region tends to be constructive rather than erosive. Overall, destructive events are rare when considering processes over the full earthquake cycle, although they are more likely if only considering the coseismic volume budget (as was the case for the 2008 Wenchuan earthquake where landsliding substantially offset coseismic uplift). Irrespective of the net budget, our results suggest that the erosive power of earthquakes plays an important role in mountain belt evolution, including by influencing structures and spatial patterns of deformation, for example affecting the wavelength of topography.