skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Unraveling the Mysteries of Asymmetric Topography at Gabilan Mesa, California
Abstract

We investigated the potential causes of topographic asymmetry at Gabilan Mesa, CA, a site that exhibits large aspect‐dependent differences in hillslope gradients and microclimates. Competing hypotheses have been proposed to explain the asymmetry observed at Gabilan Mesa. One hypothesis states that different microclimates on opposing slopes are responsible for differences in runoff or soil strength, which generates asymmetric topography. A second hypothesis states that differences in sediment flux from opposing slopes causes southward lateral channel migration and oversteepening of north facing slopes. To test these hypotheses, we carried out numerical modeling experiments, terrain analysis, and field measurements. We also considered the role of initial tilting in causing the asymmetry. We found that saturated hydraulic conductivity is considerably lower on south facing slopes in one highly asymmetric basin. This is consistent with the hypothesis that aspect‐dependent runoff is responsible for the asymmetry. We also used cosmogenic radionuclide‐derived erosion rates and topographic characteristics at Gabilan Mesa to test predictions from numerical landscape evolution models that incorporate asymmetry‐forming mechanisms. The aspect‐dependent models reproduce the erosional and topographic characteristics of Gabilan Mesa better than the lateral channel migration model. We conclude that aspect‐dependent runoff is the most likely explanation for most of the topographic asymmetry at Gabilan Mesa. Our results do not rule out tilting as a possible influence on the initial development of asymmetry nor do they rule out the possibility that lateral channel migration has contributed to the asymmetry, but we suggest that tilting and lateral channel migration are not primarily responsible for it.

 
more » « less
NSF-PAR ID:
10446799
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
7
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The structure of the critical zone (CZ) is a product of feedbacks among hydrologic, climatic, biotic, and chemical processes. Past research within snow‐dominated systems has shown that aspect‐dependent solar radiation inputs can produce striking differences in vegetation composition, topography, and soil depth between opposing hillslopes. However, far fewer studies have evaluated the role of microclimates on CZ development within rain‐dominated systems, especially below the soil and into weathered bedrock. To address this need, we characterized the CZ of a north‐facing and south‐facing slope within a first‐order headwater catchment located in central coast California. We combined terrain analysis of vegetation distribution and topography with soil pit characterization, geophysical surveys and hydrologic measurements between slope‐aspects. We documented denser vegetation and higher shallow soil moisture on north facing slopes, which matched previously documented observations in snow‐dominated sites. However, average topographic gradients were 24° and saprolite thickness was approximately 6 m across both hillslopes, which did not match common observations from the literature that showed widespread asymmetry in snow‐dominated systems. These results suggest that dominant processes for CZ evolution are not necessarily transferable across regions. Thus, there is a continued need to expand CZ research, especially in rain‐dominated and water‐limited systems. Here, we present two non‐exclusive mechanistic hypotheses that may explain these unexpected similarities in slope and saprolite thickness between hillslopes with opposing aspects.

     
    more » « less
  2. Aspect influences critical zone (CZ) function, particularly in mountainous terrain where it is an ecosystem-defining geographical feature. Distinct insolation across aspects is linked to differences in water availability and flows, land cover and vegetation productivity, soil thickness and rooting depths, frost cracking, weathering rates, and solute concentrations. Relatively few studies have explored any changing influence of aspect on vegetation productivity, which governs soil water storage and runoff. We probe the hypothesis that the productivity benefit of growing on aspects with greater radiation inputs in mountain systems has been declining over the past few decades as warming has accelerated. We quantify how forest productivity varies with aspect from 1985 to 2021 across the world’s mountain ranges using a monthly-averaged, satellite-derived measure of greenness (NDVI). Globally, most montane forests exhibited increasing greenness over time. Mountainous forests ~15° to ~40° latitude N or S of the equator exhibited behavior consistent with our hypothesis by increasingly favoring shadier aspects, particularly during growing seasons when rainfall and soil moisture can be limiting to productivity. In contrast, closer to the poles where climates are coolest and aspect has an even greater influence on annual solar radiation, the benefit of a sun-facing aspect appears to be increasing across all seasons, consistent with poleward forest community migration hypotheses. We also demonstrate greater increases over time in montane forest greenness on east-facing slopes compared to west-facing slopes; north of ~40° latitude this pattern appears less robust. These observations reveal that it is increasingly disadvantageous for montane forests growing on sunnier, hotter aspects at relatively low latitudes during the hottest times of the year. Given known linkages between ecosystem productivity and CZ functions like water storage, provision, and flows, soil development, solute production, and regolith thickness, these analyses cast light on yet-underappreciated consequences of a rapidly warming climate on Earth’s montane forests and their capacity to shape CZ processes. 
    more » « less
  3. null (Ed.)
    We addressed the frequent occurrence of mixed-chain lipids in biological membranes and their impact on membrane structure by studying several chain-asymmetric phosphatidylcholines and the highly asymmetric milk sphingomyelin. Specifically, we report trans-membrane structures of the corresponding fluid lamellar phases using small-angle X-ray and neutron scattering, which were jointly analyzed in terms of a membrane composition-specific model, including a headgroup hydration shell. Focusing on terminal methyl groups at the bilayer center, we found a linear relation between hydrocarbon chain length mismatch and the methyl-overlap for phosphatidylcholines, and a non-negligible impact of the glycerol backbone-tilting, letting the sn1-chain penetrate deeper into the opposing leaflet by half a CH2 group. That is, penetration-depth differences due to the ester-linked hydrocarbons at the glycerol backbone, previously reported for gel phase structures, also extend to the more relevant physiological fluid phase, but are significantly reduced. Moreover, milk sphingomyelin was found to follow the same linear relationship suggesting a similar tilt of the sphingosine backbone. Complementarily performed molecular dynamics simulations revealed that there is always a part of the lipid tails bending back, even if there is a high interdigitation with the opposing chains. The extent of this back-bending was similar to that in chain symmetric bilayers. For both cases of adaptation to chain length mismatch, chain-asymmetry has a large impact on hydrocarbon chain ordering, inducing disorder in the longer of the two hydrocarbons. 
    more » « less
  4. Abstract

    Scroll bars across a 65‐km stretch of the Trinity River in Texas, USA were studied using LiDAR data as well as with a series of 11 trenches spread out across the survey area. We conclude that scroll bars are levees that are deposited along the inner banks of these meandering river bends. Scroll bar crests were found to have similar elevations to those of outer bank levee crests, implying that they are constructional features that create positive topographic relief above the elevation of the floodplain. Trenches reveal that scroll bars are built from reworked suspended sediment, with common ripple‐scale cross stratification, planar laminations and muddy bioturbated layers – characteristics often associated with levee sedimentation in other systems. LiDAR observation of the erosion of scroll bars by bed material transport during flood implies that scroll bar spacing is an imperfect proxy for estimating overall channel migration rates. In addition, interspersed lenses of coarser sediment with dune‐scale cross stratification represent the stratigraphic record of these erosional events and suggest that erosion of the channel‐ward edge of the scroll bar is not uncommon. Preservation of scroll bars is unlikely, given that they are responsible for an average of only the uppermost 12% of the total inner bank relief. We suggest that misidentification of point bar lateral accretion surfaces as scroll bars is common and can lead to issues with reconstructing channel properties due to systematic differences between point bar and scroll bar planform geometries. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  5. Abstract

    Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.

     
    more » « less