Abstract Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines.
more »
« less
Competition shapes individual foraging and survival in a desert rodent ensemble
Abstract Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10446880
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 90
- Issue:
- 12
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- p. 2806-2818
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.more » « less
-
Dietary variation within species has important ecological and evolutionary implications. While theoreticians have debated the consequences of trait variance (including dietary specialization), empirical studies have yet to examine intraspecific dietary variability across the globe and through time. Here, we use new and published serial sampled δ 13 C enamel values of herbivorous mammals from the Miocene to the present (318 individuals summarized, 4134 samples) to examine how dietary strategy (i.e. browser, mixed-feeder, grazer) affects individual isotopic variation. We find that almost all herbivores, regardless of dietary strategy, are composed of individual specialists. For example, Cormohipparion emsliei (Equidae) from the Pliocene of Florida (approx. 5 Ma) exhibits a δ 13 C enamel range of 13.4‰, but all individuals sampled have δ 13 C enamel ranges of less than or equal to 2‰ (mean = 1.1‰). Most notably, this pattern holds globally and through time, with almost all herbivorous mammal individuals exhibiting narrow δ 13 C enamel ranges (less than or equal to 3‰), demonstrating that individuals are specialized and less representative of their overall species' dietary breadth. Individual specialization probably reduces intraspecific competition, increases carrying capacities, and may have stabilizing effects on species and communities over time. Individual specialization among species with both narrow and broad dietary niches is common over space and time—a phenomenon not previously well recognized or documented empirically.more » « less
-
Abstract Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.more » « less
-
Abstract A major question in ecology is how often competing species evolve to reduce competitive interactions and facilitate coexistence. One untested route for a reduction in competitive interactions is through ontogenetic changes in the trophic niche of one or more of the interacting species. In such cases, theory predicts that two species can coexist if the weaker competitor changes its resource niche to a greater degree with increased body size than the superior competitor.We tested this prediction using stable isotopes that yield information about the trophic position (δ15N) and carbon source (δ13C) of two coexisting fish species: Trinidadian guppiesPoecilia reticulataand killifishRivulus hartii.We examined fish from locations representing three natural community types: (1) where killifish and guppies live with predators, (2) where killifish and guppies live without predators and (3) where killifish are the only fish species. We also examined killifish from communities in which we had introduced guppies, providing a temporal sequence of the community changes following the transition from a killifish only to a killifish–guppy community.We found that killifish, which are the weaker competitor, had a much larger ontogenetic niche shift in trophic position than guppies in the community where competition is most intense (killifish–guppy only). This result is consistent with theory for size‐structured populations, which predicts that these results should lead to stable coexistence of the two species. Comparisons with other communities containing guppies, killifish and predators and ones where killifish live by themselves revealed that these results are caused primarily by a loss of ontogenetic niche changes in guppies, even though they are the stronger competitor. Comparisons of these natural communities with communities in which guppies were translocated into sites containing only killifish showed that the experimental communities were intermediate between the natural killifish–guppy community and the killifish–guppy–predator community, suggesting contemporary evolution in these ontogenetic trophic differences.These results provide comparative evidence for ontogenetic niche shifts in contributing to species coexistence and comparative and experimental evidence for evolutionary or plastic changes in ontogenetic niche shifts following the formation of new communities.more » « less
An official website of the United States government
