Biotic homogenization is a ubiquitous consequence of human disturbance. Through a mix of local extinctions and invasions, diverse communities of specialists are often replaced by or inundated with generalist species, resulting in uncertain consequences for ecological functions. While concern about biotic homogenization is growing, intraspecific variation and individual diet specialization (IS) have also emerged as key drivers of ecological functions. The niche variation hypothesis predicts that when a population is released from interspecific competition (ie “ecological release”), intraspecific competition will promote resource niche expansion and IS. It then follows that if biotic homogenization reduces taxonomic diversity and
Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear. Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested. We used repeated stable isotope measurements (δ13C, δ15N; Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists. These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.
- Award ID(s):
- 1655499
- PAR ID:
- 10446880
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 90
- Issue:
- 12
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- p. 2806-2818
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
interspecific competition,intraspecific competition within the remaining taxa should expand population resource niches and increase the prevalence of IS. Here, we integrate the rapidly growing fields of biotic homogenization and intraspecific variation and assess the potential for generalist species to compensate for multiple forms of biotic homogenization via adaptive foraging, resource niche expansion, and IS. -
Abstract Despite the shared prediction that the width of a population's dietary niche expands as food becomes limiting, the Niche Variation Hypothesis (NVH) and Optimal Foraging Theory (OFT) offer contrasting views about how individuals alter diet selection when food is limited.
Classical OFT predicts that dietary preferences do not change as food becomes limiting, so individuals expand their diets as they compensate for a lack of preferred foods. In contrast, the NVH predicts that among‐individual variation in cognition, physiology or morphology create functional trade‐offs in foraging efficiency, thereby causing individuals to specialize on different subsets of food as food becomes limiting.
To evaluate (a) the predictions of the NVH and OFT and (b) evidence for physiological and cognitive‐based functional trade‐offs, we used DNA microsatellites and metabarcoding to quantify the diet, microbiome and genetic relatedness (a proxy for social learning) of 218 moose
Alces alces across six populations that varied in their degree of food limitation.Consistent with both the NVH and OFT, dietary niche breadth increased with food limitation. Increased diet breadth of individuals—rather than increased diet specialization—was strongly correlated with both food limitation and dietary niche breadth of populations, indicating that moose foraged in accordance with OFT. Diets were not constrained by inheritance of the microbiome or inheritance of diet selection, offering support for the little‐tested hypothesis that functional trade‐offs in food use (or lack thereof) determine whether populations adhere to the predictions of the NVH or OFT.
Our results indicate that both the absence of strong functional trade‐offs and the digestive physiology of ruminants provide contexts under which populations should forage in accordance with OFT rather than the NVH. Also, because dietary niche width increased with increased food limitation, OFT and the NVH provide theoretical support for the notion that plant–herbivore interaction networks are plastic rather than static, which has important implications for understanding interspecific niche partitioning. Lastly, because population‐level dietary niche breadth and calf recruitment are correlated, and because calf recruitment can be a proxy for food limitation, our work demonstrates how diet data can be employed to understand a populations' proximity to carrying capacity.
-
Abstract Coexistence of species requires equalizing mechanisms that minimize fitness differences, which are balanced by stabilizing mechanisms that enhance negative intraspecific interactions versus interspecific ones. Here, we develop a simple theoretical framework that allows measuring the relative strength of intraspecific versus interspecific competition in dominance hierarchies. We use it to evaluate mechanisms promoting coexistence between two congeneric charr that compete for foraging positions, which strongly influence density‐dependent growth and survival.
Agonistic interactions (
n = 761) among 71 Dolly VardenSalvelinus malma and whitespotted charrSalvelinus leucomaenis were measured by snorkelling in two pools in the sympatric zone of a Hokkaido stream during two summers. Interspecific dominance hierarchies, analysed using three methods, were closely correlated with fish length but the species treated each other equally. Ranks for the most dominant fish in each pool, determined directly by knockout experiments, were also virtually identical to ranks by length.Similarly, exponential random graph modelling of the social networks provided no evidence that either species was dominant over the other. Instead, larger fish were more likely to win contests, especially over fish of the next lower ranks.
These results demonstrated that the two species were nearly ecological equivalents in accessing key resources in this sympatric zone. Nearly identical growth and stable densities over 4 years further supported this inference, although Dolly Varden were a minority (29% of the assemblage), a sign of some fitness difference.
Detailed foraging observations coupled with two concurrent studies revealed an effective stabilizing mechanism. Dolly Varden shifted to feeding directly from the benthos when drifting invertebrates declined, a behaviour enhanced by morphological character displacement, thereby partitioning food resources and enhancing intraspecific competition while avoiding agonistic encounters with whitespotted charr.
The plurality of evidence indicates that fitness differences between these ecologically equivalent species are small in this local assemblage, and balanced by resource partitioning, a modest stabilizing mechanism that promotes coexistence. The theoretical framework presented here is a useful tool to evaluate the strength of interspecific versus intraspecific competition, which combined with information on trade‐offs in ecological performance can contribute to a mechanistic understanding of species coexistence.
-
Abstract Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.
In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.
We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.
Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.
Synthesis . The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines. -
Abstract Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.
Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.
We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.
Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.
In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.