skip to main content

Title: Ecological theory of mutualism: Robust patterns of stability and thresholds in two‐species population models

Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two‐species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 17651-17671
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.

    more » « less
  2. Abstract

    Mutualism benefits partner species, and theory predicts these partnerships can affect the abundance, diversity, and composition of partner and non‐partner species. We used 16 years of monitoring data to determine the ant partner species of tree cholla cacti (Cylindropuntia imbricata), which reward ants with extrafloral nectar in exchange for anti‐herbivore defense. These long‐term data revealed one dominant ant partner (Liometopum apiculatum) and two less common partners (Crematogaster opuntiaeandForelius pruinosus). We then used short‐term characterization of the terrestrial ant community by pitfall trapping to sample partner and non‐partner ant species across ten plots of varying cactus density. We found that the dominant ant partner tended a higher proportion cacti in plots of higher cactus density, and was also found at higher occurrence within the pitfall traps in higher density plots, suggesting a strong positive feedback that promotes ant partner occurrence where plant partners are available. Despite the strong association and increased partner occurrence, ant community‐wide effects from this mutualism appear limited. Of the common ant species, the occurrence of a single non‐partner ant species was negatively associated with cactus density and with the increased presence ofL. apiculatum. Additionally, the composition and diversity of the ant community in our plots were insensitive to cactus density variation, indicating that positive effects of the mutualism on the dominant ant partner did not have cascading impacts on the ant community. This study provides novel evidence that exclusive mutualisms, even those with a strong positive feedback, may be limited in the scope of their community‐level effects.

    more » « less
  3. Abstract

    Cooperative interactions may frequently be reinforced by “partner fidelity feedback,” in which high‐ or low‐quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant–animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two of many sinks to which a host‐plant allocates its resources. By investigating how partners to host‐plants impact two fundamental plant resources, carbon and water, we can better characterize plant–partner fidelity and understand how plant–partner mutualisms may be modulated by resource dynamics. In Laikipia, Kenya, four ant species compete forAcacia drepanolobiumhost‐plants. These ants differ in multiple traits, from nectar consumption to host‐plant protection. Using a 5‐year ant removal experiment, we compared carbon fixation, leaf water status, and stem non‐structural carbohydrate concentrations for adult ant–plants with and without ant partners. Removal treatments showed that the ants differentially mediate tree carbon and/or water resources. All three ant species known to be aggressive against herbivores were linked to benefits for host‐plant resources, but only the two species that defend but do not prune the host,Crematogaster mimosaeandTetraponera penzigi, increased tree carbon fixation. Of these two species, only the nectivoreC. mimosaeincreased tree simple sugars.Crematogaster nigriceps, which defends the tree but also castrates flowers and prunes meristems, was linked only to lower tree water stress approximated by pre‐dawn leaf water potential. In contrast to those defensive ants,Crematogaster sjostedti, a poor defender that displaces other ants, was linked to lower tree carbon fixation. Comparing the effects of the four ant species across control trees suggests that differential ant occupancy drives substantial differences in carbon and water supply among host trees. Our results highlight that ant partners can positively or negatively impact carbon and/or water relations for their host‐plant, and we discuss the likelihood that carbon‐ and water‐related partner fidelity feedback loops occur across ant–plant mutualisms.

    more » « less
  4. Abstract

    The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.

    We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chubNocomis leptocephalusand mountain redbelly daceChrosomus oreas, which often usesN. leptocephalusnests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity ofC. oreasto associate withN. leptocephalusand decrease reproductive success of both species.

    In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).

    Contradictory to our first hypothesis, we observed thatC. oreasdid not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.

    The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided byC. oreaspositively influenced reproductive success ofN. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.

    more » « less
  5. Premise

    Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype‐dependent, within‐species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation.


    We inoculated clover hosts with 11 strains ofRhizobium leguminosarumthat differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition.


    Light availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light.


    Our results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher‐light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume–rhizobium symbiosis.

    more » « less