Abstract The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. InvasiveAlliaria petiolata(garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses.
more »
« less
Novel chemicals engender myriad invasion mechanisms
Summary Non‐native invasive species (NIS) release chemicals into the environment that are unique to the invaded communities, defined as novel chemicals. Novel chemicals impact competitors, soil microbial communities, mutualists, plant enemies, and soil nutrients differently than in the species’ native range. Ecological functions of novel chemicals and differences in functions between the native and non‐native ranges of NIS are of immense interest to ecologists. Novel chemicals can mediate different ecological, physiological, and evolutionary mechanisms underlying invasion hypotheses. Interactions amongst the NIS and resident species including competitors, soil microbes, and plant enemies, as well as abiotic factors in the invaded community are linked to novel chemicals. However, we poorly understand how these interactions might enhance NIS performance. New empirical data and analyses of how novel chemicals act in the invaded community will fill major gaps in our understanding of the chemistry of biological invasions. A novel chemical‐invasion mechanism framework shows how novel chemicals engender invasion mechanisms beyond plant–plant or plant–microorganism interactions.
more »
« less
- PAR ID:
- 10446923
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 232
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1184-1200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Earth systems are nearing a global tipping point, beyond which the dynamics of biological communities will become unstable. One major driver of instability is species invasion, especially by organisms that act as “ecosystem engineers” through their modification of abiotic and biotic factors. To understand how native organisms respond to modified habitat, it is essential to examine biological communities within invaded and non‐invaded habitat, identifying compositional shifts in native and non‐native taxa as well as measuring how modification by ecosystem engineers has affected interactions among community members. Using dietary metabarcoding, our study examines the response of a native Hawaiian generalist predator (Araneae:Pagiopalusspp.) to habitat modification by comparing biotic interactions across metapopulations of spiders collected in native forest and sites invaded by kāhili ginger. Our study shows that, although there are shared components of the dietary community, spiders in invaded habitat are eating a less consistent and more diverse diet consisting of more non‐native arthropods which are rarely or entirely undetected in spiders collected from native forest. Additionally, the frequency of novel interactions with parasites was significantly higher in invaded sites, reflected by the frequency and diversity of non‐native Hymenoptera parasites and entomopathogenic fungi. The study highlights the role of habitat modification driven by an invasive plant in altering community structure and biotic interactions, threatening the stability of the ecosystem through significant changes to the biotic community.more » « less
-
Abstract It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes inCentaurea solstitialis(yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.more » « less
-
Abstract Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5–7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.more » « less
-
Abstract Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.more » « less
An official website of the United States government
