skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Title: Genomic investigation of colour polymorphism and phylogeographic variation among populations of black‐headed bulbul ( Brachypodius atriceps ) in insular southeast Asia

Intraspecific polymorphism in birds, especially plumage colour polymorphism, and the mechanisms that control it are an area of active research in evolutionary biology. The black‐headed bulbul (Brachypodius atriceps) is a polymorphic species with two distinct morphs, yellow and grey. This species inhabits the mainland and virtually all continental islands of Southeast Asia where yellow morphs predominate, but on two islands in the Sunda region, Bawean and Maratua, grey morphs are common or exclusive. Here, we generated a high‐quality reference genome of a yellow individual and resequenced genomes of multiple individuals of both yellow and grey morphs to study the genetic basis of coloration and population history of the species. Using PCA and STRUCTURE analysis, we found the Maratua Island population (which is exclusively grey) to be distinct from all otherB.atricepspopulations, having been isolated c. 1.9 million years ago (Ma). In contrast, Bawean grey individuals (a subset of yellow and grey individuals on that island) are embedded within an almost panmictic Sundaic clade of yellow birds. UsingFSTanddxyto compare variable genomic segments between Maratua and yellow individuals, we located peaks of divergence and identified candidate loci involved in the colour polymorphism. Tests of selection among coding‐proteins in highFSTregions, however, did not indicate selection on the candidate genes. Overall, we report on some loci that are potentially responsible for the grey/yellow polymorphism in a species that otherwise shows little genetic diversification across most of its range.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 4757-4770
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The amphicarpic annual legumeAmphicarpaea bracteatais unusual in producing aerial and subterranean cleistogamous flowers that always self‐fertilize and, less commonly, aerial chasmogamous flowers that outcross. Although both morphologic and genetic variants are known in this highly selfing species, debate continues over whether this variation is continuous, reflecting the segregation of standing genetic variation, or discontinuous, reflecting distinct taxa that rarely intercross. We characterizedSNPvariation in 128 individuals in southern Wisconsin to assess within‐ and among‐population variation at 3928SNPs. We also assessed genotype and leaf morphology in an additional 76 individuals to connect phenotypic variation with genetic variation. Genetic variation maps onto three strongly divergent and highly inbred genetic groups showing little relation to site location. Each group has a distinct phenotype, but the divergence of these groups differs from the varietal divisions previously identified based on morphological characters. Like previous authors, we argue that the taxonomy of this species should be revised. Despite extensive sympatry, estimates of among‐group migration rates are low, and hybrid individuals were at low frequency (<2%) in our dataset. Restricted gene flow likely results from high selfing rates and partial reproductive incompatibility as evidenced by the U‐shaped distribution of pairwiseFSTvalues reflecting “islands” of genomic divergence. These islands may be associated with hybrid incompatibility loci that arose in allopatry. The coexistence of lineages within sites may reflect density‐dependent attack by species‐specific strains of pathogenic fungi and/or root‐nodulating bacteria specializing on distinct genotypes.

    more » « less
  2. Abstract

    Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina‐sequenced ddRADtags to identify genomewide patterns of differentiation in three recently diverged island populations of theMonarcha castaneiventrisflycatcher of the Solomon Islands. Populations of this species have diverged in plumage colour, and these differences in plumage colour, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations inMC1RandASIP, both known pigmentation genes, to be associated with the difference in plumage colour between islands. Here, we show that background levels of genomic differentiation based on over 70,000SNPs are extremely low between populations of distinct plumage colour, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on theseSNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene flow between populations.

    more » « less
  3. Abstract

    Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish,Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nineP. volitanssampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using anFSToutlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.

    more » « less
  4. Abstract

    Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to easternUSforests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases ofGBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluatedFstper locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScanFstoutliers. ForLFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.

    more » « less
  5. Abstract

    Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remainingV. variegatarange. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNAsequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of theMangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNAhaplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high averageFST(0.247) and ΦST(0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.

    more » « less