skip to main content


This content will become publicly available on August 25, 2024

Title: Specimen plane orientation determination for analysis based on scanning electron microscope: Comparing top‐down and side‐view approaches
Abstract Research Highlights

Top‐down and side‐view approaches have been proposed and tested for in‐situ determination of specimen planar surface orientation in a Scanning Electron Microscope.

The measured angles between two surfaces are consistent with those expected from crystallographic consideration within 2.7° and 1.7° for the top‐down and side‐view approaches, respectively.

 
more » « less
NSF-PAR ID:
10446976
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Microscopy Research and Technique
Volume:
86
Issue:
12
ISSN:
1059-910X
Format(s):
Medium: X Size: p. 1681-1690
Size(s):
["p. 1681-1690"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantitative analysis methods based on the usage of a scanning electron microscope (SEM), such as energy-dispersive X-ray spectroscopy, often require specimens to have a flat surface oriented normal to the electron beam. In-situ procedures for putting microscopic flat surfaces into this orientation generally rely on stereoscopic methods that measure the change in surface vector projections when the surface is tilted by some known angle. Although these methods have been used in the past, there is no detailed statistical analysis of the uncertainties involved in such methods, which leaves an uncertainty in how precisely a specimen can be oriented. Here, we present a first principles derivation of a specimen orientation method and apply our method to a flat sample to demonstrate it. Unlike previous works, we develop a computer vision program using the scale-invariant feature transform to automate and expedite the process of making measurements on our SEM images, thus enabling a detailed statistical analysis of the method with a large sample size. We find that our specimen orientation method is able to orient flat surfaces with high precision and can further provide insight into errors involved in the standard SEM rotation and tilt operations. 
    more » « less
  2. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

     
    more » « less
  3. Abstract Practitioner Points

    Plastic physical and chemical properties act as forces of selection for biofilm.

    Biofilm activity was similar among three different types of plastic.

    Community composition between plastic and wood was different.

     
    more » « less
  4. Abstract

    Surface texturing not only decreases friction by reducing the real area of contact but also is crucial for achieving multifunctionality. However, texturing a surface might undermine its deformation resistance due to increased sliding contact pressure. High resolution, 3D control over texture shapes can potentially address this issue. Utilizing a micro/nano‐scale additive manufacturing method based on two‐photon polymerization, textures are fabricated with precise shape, dimension, and position control. This allows for a systematic investigation of the effects of texture three‐dimensionality by comparing 3D textures (truncated cones) with 2.5D textures (cylinders and rods). Moreover, macro‐ and micro‐scale tribological testing and in situ monitoring of the experiments using a digital microscope at macro‐scale and a scanning electron microscope (SEM) at micro‐scale provides unique insights into the multi‐scale tribological properties of the textured surfaces by real‐time monitoring of the interplay between the forces and the sliding surfaces down to a single micro‐scale structure level. Macro‐scale tests show that cones not only have a lower coefficient of friction due to their reduced area of contact but also slide more smoothly and are more durable. Micro‐scale tests shed new light on the relationship between friction and the microstructure deformation by in situ SEM monitoring of texture‐counterface interactions.

     
    more » « less
  5. Abstract

    Landmark‐based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever‐increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three‐dimensional (3D) morphometric data are still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image‐based registration, together with its system specificity and its overall speed, have prevented its wide dissemination.

    Here, we propose and implement a general and lightweight point cloud‐based approach to automatically collect high‐dimensional landmark data in 3D surfaces (Automated Landmarking through Point cloud Alignment and Correspondence Analysis). Our framework possesses several advantages compared with image‐based approaches. First, it presents comparable landmarking accuracy, despite relying on a single, random reference specimen and much sparser sampling of the structure's surface. Second, it can be efficiently run on consumer‐grade personal computers. Finally, it is general and can be applied at the intraspecific level to any biological structure of interest, regardless of whether anatomical atlases are available.

    Our validation procedures indicate that the method can recover intraspecific patterns of morphological variation that are largely comparable to those obtained by manual digitization, indicating that the use of an automated landmarking approach should not result in different conclusions regarding the nature of multivariate patterns of morphological variation.

    The proposed point cloud‐based approach has the potential to increase the scale and reproducibility of morphometrics research. To allow ALPACA to be used out‐of‐the‐box by users with no prior programming experience, we implemented it as a SlicerMorph module. SlicerMorph is an extension that enables geometric morphometrics data collection and 3D specimen analysis within the open‐source 3D Slicer biomedical visualization ecosystem. We expect that convenient access to this platform will make ALPACA broadly applicable within ecology and evolution.

     
    more » « less