skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Observed Ocean Surface Winds and Mixed Layer Currents Under Tropical Cyclones: Asymmetric Characteristics
Abstract

Tropical cyclones (TC) transfer kinetic energy to the upper ocean and thus accelerate the ocean mixed layer (OML) currents. However, the quantitative link between near‐surface currents and high wind speeds, under extreme weather conditions, remains poorly understood. In this study, we use multi‐mission satellites and drifting‐buoy observations to investigate the connections between TC surface winds and currents, including their spatial distribution characteristics. Observed ageostrophic current speeds in the OML increase linearly with wind speeds (for the range 20–50 m/s). The ratios of the ageostrophic current speeds to the wind speeds are found to vary with TC quadrants. In particular, the mean ratio is around 2% in the left‐front and left‐rear quadrants with relatively small variability, compared to between 2% and 4% in the right‐front and right‐rear quadrants, with much higher variations. Surface winds and currents both exhibit strong asymmetric features, with the largest wind speeds and currents on the TC right side. In the eyewall region of Hurricane Igor, high winds (e.g., about 47 m/s) induce strong currents (about 2 m/s). The directional rotations of surface winds and currents are resonant and dependent on the location within the storm. Wind directions are approximately aligned with current directions in the right‐front quadrant; a difference of about 90° occurs in the left‐front and left‐rear quadrants. The directional discrepancy between winds and currents in the right‐rear quadrant is smaller. Reliable observations of the wind‐current relation, including asymmetric features, support published theories developed in idealized numerical experiments to explain the upper ocean response to TCs.

 
more » « less
PAR ID:
10447000
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
127
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal‐mean radius of maximum wind speed at 1‐km height. As in a previous study, the axisymmetric TKE decreases with height in the eyewall, but more abruptly in simulations without TKE advection. The largest TKE budget terms are shear generation and dissipation, though variability in vertical turbulent transport and buoyancy production affect the change in the azimuthal‐mean TKE distribution. The general relationships between the TKE budget terms are consistent across different radii, regardless of storm intensity. In terms of the asymmetric distribution in the eyewall, TKE is maximized in the front‐left quadrant where the sea surface temperature (SST) is highest and is minimized in the rear‐right quadrant where the SST is the lowest. In the category‐5 simulation, the height of the TKE maximum varies significantly in the eyewall between quadrants and is between ∼400 m in the rear‐right quadrant and ∼1,000 m in the front‐left quadrant. When TKE advection is included in the simulations, the maximum eyewall TKE values are downwind compared to the simulations without TKE advection.

     
    more » « less
  2. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less
  3. Abstract

    The drag coefficient under tropical cyclones and its dependence on sea states are investigated by combining upper-ocean current observations [using electromagnetic autonomous profiling explorer (EM-APEX) floats deployed under five tropical cyclones] and a coupled ocean–wave (Modular Ocean Model 6–WAVEWATCH III) model. The estimated drag coefficient averaged over all storms is around 2–3 × 10−3for wind speeds of 25–55 m s−1. While the drag coefficient weakly depends on wind speed in this wind speed range, it shows stronger dependence on sea states. In particular, it is significantly reduced when the misalignment angle between the dominant wave direction and the wind direction exceeds about 45°, a feature that is underestimated by current models of sea state–dependent drag coefficient. Since the misaligned swell is more common in the far front and in the left-front quadrant of the storm (in the Northern Hemisphere), the drag coefficient also tends to be lower in these areas and shows a distinct spatial distribution. Our results therefore support ongoing efforts to develop and implement sea state–dependent parameterizations of the drag coefficient in tropical cyclone conditions.

     
    more » « less
  4. Abstract

    Dual‐polarization radar observations of Hurricane Irma (2017) provide new insight into the microphysical structure of a mature tropical cyclone that can be tied to the cyclone dynamics. The primary eyewall exhibited a radar signature of hydrometeor size sorting, which implied that large drops fell out near persistent upward motion in the front‐right quadrant of the storm, while smaller drops were advected downstream. In the outer rainbands, convective initiation was also preferred in the front‐right quadrant, whereas stratiform precipitation was predominant downwind. For both the primary eyewall and outer rainbands, the preferred quadrant for convective initiation was consistent with the expected kinematic asymmetry of a tropical cyclone in weak environmental wind shear but with moderate translation speed. The developing secondary eyewall exhibited a different asymmetry that indicated a stratiform‐to‐convective transition associated with heavy precipitation in the rear quadrants. This transition is consistent with hypothesized dynamical theories for secondary eyewall formation.

     
    more » « less
  5. null (Ed.)
    Abstract In this study, based on the 6-hourly tropical cyclone (TC) best track data and the ERA-Interim reanalysis data, statistical analyses as well as a machine learning approach, XGBoost, are used to identify and quantify factors that affect the overwater weakening rate (WR) of TCs over the western North Pacific (WNP) during 1980–2017. Statistical analyses show that the TC rapid weakening events usually occur when intense TCs cross regions with a sharp decrease in sea surface temperature (DSST) with relatively faster eastward or northward translational speeds, and move into regions with large environmental vertical wind shear (VWS) and dry conditions in the upshear-left quadrant. Results from XGBoost indicate that the relative intensity of TC (TC intensity normalized by its maximum potential intensity), DSST, and VWS are dominant factors determining TC WR, contributing 26.0%, 18.3%, and 14.9% to TC WR, and 9, 5, and 5 m s−1 day−1 to the variability of TC WR, respectively. Relative humidity in the upshear-left quadrant of VWS, zonal translational speed, divergence at 200 hPa, and meridional translational speed contribute 12.1%, 11.8%, 8.8%, and 8.1% to TC WR, respectively, but only contribute 2–3 m s−1 day−1 to the variability of TC WR individually. These findings suggest that the improved accurate analysis and prediction of the dominant factors may lead to substantial improvements in the prediction of TC WR. 
    more » « less