skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking the Surface and Subsurface in River Deltas—Part 1: Relating Surface and Subsurface Geometries
Abstract River deltas are densely populated regions of the world with vulnerable groundwater reserves. Contamination of these groundwater aquifers via saline water intrusion and pollutant transport is a growing threat due to both anthropogenic and climate changes. The arrangement and composition of subsurface sediment is known to have a significant impact on aquifer contamination; however, developing accurate depictions of the subsurface is challenging. In this work, we explore the relationship between surface and subsurface properties and identify the metrics most sensitive to different forcing conditions. To do so, we simulate river delta evolution with the rule‐based numerical model, DeltaRCM, and test the influence of input sand fraction and steady sea level rise (SLR) on delta evolution. From the model outputs, we measure a variety of surface and subsurface metrics chosen based on their applicability to imagery and modeling results. The Kullback‐Leibler (KL) divergence is then used to quantitatively gauge which metrics are most indicative of the imposed forcings. Both qualitative observations and the KL divergence analysis suggest that estimates of subsurface connectivity can be constrained using surface information. In particular, more variable shoreline roughness values and higher surface wetted fraction values correspond to increased subsurface connectivity. These findings complement traditional methods of estimating subsurface structure in river‐dominated delta systems and represent a step toward the identification of a direct link between surface observations and subsurface form.  more » « less
Award ID(s):
1719638
PAR ID:
10447019
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding subsurface structure and groundwater flow in deltaic aquifers is essential for evaluating the vulnerability of groundwater resources in delta systems. Deltaic aquifers contain coarse‐grained paleochannels that preserve a record of former surface river channels as well as fine‐grained floodplain deposits. The distribution of these deposits and how they are interconnected control groundwater flow and contaminant transport. In this work, we link depositional environments of deltaic aquifers to stratigraphic (static) and flow and transport (dynamic) connectivity metrics. Numerical models of deltaic stratigraphy were generated using a reduced‐complexity numerical model (DeltaRCM) with different input sand fractions (ISF) and rates of sea‐level rise (SLR). The groundwater flow and advective transport behavior of these deltas were simulated using MODFLOW and MODPATH. By comparing the static and dynamic metrics calculated from these numerical models, we show that groundwater behavior can be predicted by particular aspects of the subsurface architecture, and that horizontal and vertical connectivity display different characteristics. We also evaluate relationships between connectivity metrics and two environmental controls on delta evolution: ISF and SLR rate. The results show that geologic setting strongly influences both static and dynamic connectivity in different directions. These results provide insights into quantitatively differentiated subsurface hydraulic behavior between deltas formed under different external forcing (ISF and SLR rate) and they are a potential link in using information from delta surface networks and depositional history to predict vulnerability to aquifer contamination. 
    more » « less
  2. Abstract Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. 
    more » « less
  3. Abstract Climate change is raising sea levels across the globe. On river deltas, sea‐level rise (SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that adversely impact coastal communities. There is significant uncertainty surrounding future SLR trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical modeling is needed to explore how different SLR projections may impact river delta evolution. In this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5 and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial timescales. In particular, increased channel mobility due to SLR corresponds to higher sand connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify correlations between surface and subsurface properties, and find that inferences of subsurface structure from the current surface configuration should be limited to time spans over which the sea level forcing is approximately steady. As a result, this work improves our ability to predict future delta evolution and subsurface connectivity as sea levels continue to rise. 
    more » « less
  4. Abstract The equatorial cold tongue region has not warmed up in response to historical radiative forcing in the real world, contrary to the strong warming often simulated by climate models. Here we demonstrate that climate models fail to represent one or both of the key processes driving observed sea surface temperature (SST) pattern formation: a realistic surface wind stress pattern shaping subsurface cooling through wind‐driven circulation changes, and effective connectivity between subsurface and surface temperatures via upwelling and mixing. Consequently, none of the models approximate the observed lack of cold tongue SST warming and strengthening of zonal SST gradient across the equatorial Pacific. Furthermore, those that come closest achieve this due to interhemispheric warming differences rather than equatorial dynamics as observed. Addressing different origins of subsurface cooling in observations and simulations, and how they connect to SST, will lead to improved understanding of tropical Pacific SST changes to date and how they will evolve in the future. 
    more » « less
  5. ABSTRACT Hydrologic connectivity is defined as the connection among stores of water within a watershed and controls the flux of water and solutes from the subsurface to the stream. Hydrologic connectivity is difficult to quantify because it is goverened by heterogeniety in subsurface storage and permeability and responds to seasonal changes in precipitation inputs and subsurface moisture conditions. How interannual climate variability impacts hydrologic connectivity, and thus stream flow generation and chemistry, remains unclear. Using a rare, four‐year synoptic stream chemistry dataset, we evaluated shifts in stream chemistry and stream flow source of Coal Creek, a montane, headwater tributary of the Upper Colorado River. We leveraged compositional principal component analysis and end‐member mixing to evaluate how seasonal and interannual variation in subsurface moisture conditions impacts stream chemistry. Overall, three main findings emerged from this work. First, three geochemically distinct end members were identified that constrained stream flow chemistry: reach inflows, and quick and slow flow groundwater contributions. Reach inflows were impacted by historic base and precious metal mine inputs. Bedrock fractures facilitated much of the transport of quick flow groundwater and higher‐storage subsurface features (e.g., alluvial fans) facilitated the transport of slow flow groundwater. Second, the contributions of different end members to the stream changed over the summer. In early summer, stream flow was composed of all three end members, while in late summer, it was composed predominantly of reach inflows and slow flow groundwater. Finally, we observed minimal differences in proportional composition in stream chemistry across all four years, indicating seasonal variability in subsurface moisture and spatial heterogeneity in landscape and geologic features had a greater influence than interannual climate fluctuation on hydrologic connectivity and stream water chemistry. These findings indicate that mechanisms controlling solute transport (e.g., hydrologic connectivity and flow path activation) may be resilient (i.e., able to rebound after perturbations) to predicted increases in climate variability. By establishing a framework for assessing compositional stream chemistry across variable hydrologic and subsurface moisture conditions, our study offers a method to evaluate watershed biogeochemical resilience to variations in hydrometeorological conditions. 
    more » « less