skip to main content


Title: Conformability of flexible sheets on spherical surfaces
A scaling law to predict the conformability of flexible sheets on spherical surfaces is derived and used to enhance the wrap.  more » « less
Award ID(s):
2133106
NSF-PAR ID:
10447056
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
16
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The aim of this demo is to explore the implementation of an ultra-low-power analog-to-feature ASIC to an IoT embedded system. The custom integrated circuit, designed to optimize the power consumption of a traditional sound-source localization systems, is capable of extracting the time-difference of arrival (TDoA) between 4 microphones consuming only 78.2nW. An end-to-end embedded system is presented; a microphone array is connected to the ASIC that converts the TDoA to digital information and sends it to a host computer. A machine-learning algorithm, running in the host, is then used to detect the bearing of the sound-source. During the demonstration, the audience is able to verify the benefits and drawbacks of the custom integrated circuit solution, both in the perspective of the signal-processing performance of the ASIC, and the impact it introduces to the complexity of the system’s integration. 
    more » « less
  2. The dataset includes the measurements of individual subduction zones defined in the convergence-parallel, trench-perpendicular, and spreading-parallel direction. 

     

    Table S3. Location of each trench, arc, and back-arc defined in a direction parallel to the convergence, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). 

    Table S4. Location of each trench, arc, and back-arc defined in a direction perpendicular to the trench, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). 

    Table S5. Location of each trench, arc, and back-arc defined in a direction parallel to the spreading direction, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). 

     

     
    more » « less
  3. null (Ed.)
    This paper studies the task of Relation Extraction (RE) that aims to identify the semantic relations between two entity mentions in text. In the deep learning models for RE, it has been beneficial to incorporate the syntactic structures from the dependency trees of the input sentences. In such models, the dependency trees are often used to directly structure the network architectures or to obtain the dependency relations between the word pairs to inject the syntactic information into the models via multi-task learning. The major problem with these approaches is the lack of generalization beyond the syntactic structures in the training data or the failure to capture the syntactic importance of the words for RE. In order to overcome these issues, we propose a novel deep learning model for RE that uses the dependency trees to extract the syntax-based importance scores for the words, serving as a tree representation to introduce syntactic information into the models with greater generalization. In particular, we leverage Ordered-Neuron Long-Short Term Memory Networks (ON-LSTM) to infer the model-based importance scores for RE for every word in the sentences that are then regulated to be consistent with the syntax-based scores to enable syntactic information injection. We perform extensive experiments to demonstrate the effectiveness of the proposed method, leading to the state-of-the-art performance on three RE benchmark datasets. 
    more » « less
  4. Abstract

    We present BrainNet which, to our knowledge, is the first multi-person non-invasive direct brain-to-brain interface for collaborative problem solving. The interface combines electroencephalography (EEG) to record brain signals and transcranial magnetic stimulation (TMS) to deliver information noninvasively to the brain. The interface allows three human subjects to collaborate and solve a task using direct brain-to-brain communication. Two of the three subjects are designated as “Senders” whose brain signals are decoded using real-time EEG data analysis. The decoding process extracts each Sender’s decision about whether to rotate a block in a Tetris-like game before it is dropped to fill a line. The Senders’ decisions are transmitted via the Internet to the brain of a third subject, the “Receiver,” who cannot see the game screen. The Senders’ decisions are delivered to the Receiver’s brain via magnetic stimulation of the occipital cortex. The Receiver integrates the information received from the two Senders and uses an EEG interface to make a decision about either turning the block or keeping it in the same orientation. A second round of the game provides an additional chance for the Senders to evaluate the Receiver’s decision and send feedback to the Receiver’s brain, and for the Receiver to rectify a possible incorrect decision made in the first round. We evaluated the performance of BrainNet in terms of (1) Group-level performance during the game, (2) True/False positive rates of subjects’ decisions, and (3) Mutual information between subjects. Five groups, each with three human subjects, successfully used BrainNet to perform the collaborative task, with an average accuracy of 81.25%. Furthermore, by varying the information reliability of the Senders by artificially injecting noise into one Sender’s signal, we investigated how the Receiver learns to integrate noisy signals in order to make a correct decision. We found that like conventional social networks, BrainNet allows Receivers to learn to trust the Sender who is more reliable, in this case, based solely on the information transmitted directly to their brains. Our results point the way to future brain-to-brain interfaces that enable cooperative problem solving by humans using a “social network” of connected brains.

     
    more » « less
  5. In order to monitor the quality of parts in printing, the methodology to monitor the geometric quality of the printed parts in fused deposition modeling process is researched. A non-contact measurement method based on machine vision technology is adopted to obtain the precise complete geometric information. An image acquisition system is established to capture the image of each layer of the part in building and image processing technology is used to obtain the geometric profile information.With the above information, statistical process control method is applied to monitor the geometric quality of the parts during the printing process. Firstly, a border signature method is applied to transform complex geometry into a simple distance-angle function to get the profile deviation data. Secondly, monitoring of the profile deviation data based on profile monitoring method is studied and applied to achieve the goal of layer-to-layer monitoring. In the research, quantile-quantile plot method is used to transform the profile deviation point cloud data monitoring problem into a linear profile relationship monitoring problem andEWMAcontrol charts are established to monitor the parameters of the linear relationship to detect shifts occurred in the Fused Deposition Modeling process. Finally, laboratory experiments are conducted to demonstrate the effectiveness of the proposed approach. 
    more » « less