skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slowing down x-ray photons in a vibrating recoilless resonant absorber
Abstract Recently, an observation of acoustically induced transparency (AIT) of a stainless-steel foil for resonant 14.4-keV photons from a radioactive 57 Co Mössbauer source due to collective uniform oscillations of atomic nuclei was reported [Phys Rev Lett 124,163602, 2020]. In this paper, we propose to use the steep resonant dispersion of the absorber within the AIT spectral window to dramatically reduce a propagation velocity of γ-ray and x-ray photons. In particular, we show that a significant fraction (more than 40%) of a 97-ns γ-ray single-photon wave packet from a 57 Co radioactive source can be slowed down up to 3 m/s and delayed by 144 ns in a 57 Fe-enriched stainless-steel foil at room temperature. We also show that a similarly significant slowing down up to 24 m/s and a delay by 42 ns can be achieved for more than 70% of the 100-ns 14.4-keV x-ray single-photon pulse from a synchrotron Mössbauer source available at European Synchrotron Radiation Facility (ESRF) and Spring-8 facility. The propagation velocity can be widely controlled by changing the absorber vibration frequency. Achieving the propagation velocity on the order of 1–50 m/s would set a record in the hard x-ray range, comparable to what was obtained in the optical range.  more » « less
Award ID(s):
2012194
PAR ID:
10447160
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A technique to transform the waveform of a 14.4 keV photon (time dependence of the photon detection probability or, equivalently, the intensity of the single-photon wave packet) into a regular sequence of short, nearly bandwidth-limited pulses with a controlled number of pulses is proposed. It is based on coherent forward scattering of single X-ray photons from a synchrotron Mössbauer source (SMS) in an optically thick, vibrating, recoilless 57Fe resonant absorber. The possibility of compressing the waveform of an SMS photon into a single short bell-shaped pulse is predicted. The experiment is proposed for compressing a 100 ns duration 14.4 keV single-photon wave packet produced by SMS at the European Synchrotron Radiation Facility (ESRF) into a single bell-shaped pulse of less than 20 ns duration and more than twice the peak intensity. Such single-photon coherent pulses are promising for applications in the fast-developing field of X-ray quantum optics, including possible implementation of quantum memory. 
    more » « less
  2. Abstract The induced transparency of opaque medium for resonant electromagnetic radiation is a powerful tool for manipulating the field-matter interaction. Various techniques to make different physical systems transparent for radiation from microwaves to x-rays were implemented. Most of them are based on the modification of the quantum-optical properties of the medium under the action of an external coherent electromagnetic field. Recently, an observation of acoustically induced transparency (AIT) of the57Fe absorber for resonant 14.4-keV photons from the radioactive57Co source was reported. About 150-fold suppression of the resonant absorption of photons due to collective acoustic oscillations of the nuclei was demonstrated. In this paper, we extend the AIT phenomenon to a novel phase-locked regime, when the transmitted photons are synchronized with the absorber vibration. We show that the advantages of synchrotron Mössbauer sources such as the deterministic periodic emission of radiation and controlled spectral-temporal characteristics of the emitted photons along with high-intensity photon flux in a tightly focused beam, make it possible to efficiently implement this regime, paving the way for the development of the acoustically controlled interface between hard x-ray photons and nuclear ensembles. 
    more » « less
  3. Abstract A unique method is presented for the acquisition and analysis of57Fe backscatter Mössbauer spectra with simultaneous detection of the resonant 14.4 keVγ-rays and the characteristic 6.4 keV x-rays, using a custom-built multi-parameter analyser constructed on the basis of commercial analogue to digital converters and high-speed digital latches. The system allows for the simultaneous registration of Doppler-modulation velocities and photon energies, with up to 4096 and 8192 digital channels respectively. This arrangement is in contrast to most related systems, which detect at a single narrow energy window per detector. Samples of arbitrary atomic structure, morphology and surface topography can be studied without altering the setup or the analysis procedure, provided that the samples are at least micrometre sized. The hardware and software that are used to acquire data with minimal dead time are described and the custom and self-contained methods for post-measurement energy discrimination, background correction and velocity-axis folding are discussed. The data are fit using a general Hamiltonian model for the nuclear energy levels of57Fe and a quantum mechanical description of the angular momentum coupling is utilised, with consideration of the crystalline and chemical disorder of the sample under examination. Three examples of distinct magnetic systems, with thicknesses ranging from 5 μ m to 6 mm, that were studied using this method are presented, these are: an amorphous CoFeB-based ribbon with ultra-soft coercivity for high-frequency applications, magnetically hard Nd-Fe-B thick films on Si substrates, examined in both as-deposited and annealed states, and a sample from the nickel-rich iron meteorite NWA 6259 that contains the atomically ordered, elevated coercivity, L 1 0 phase of FeNi, tetrataenite. The wide applicability and usefulness of this method is thus demonstrated on three distinct sample morphologies that required little to no surface preparation prior to examination. 
    more » « less
  4. We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A ⋆ . We obtained light curves in the M , K , and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νL ν  ∝  ν 0.5 ± 0.2 ; the spectral slope observed in the X-ray band is νL ν  ∝  ν −0.7 ± 0.5 . Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED) and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γ max , which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γ max  ∼ 500, while cooled synchrotron model requires acceleration up to γ max  ∼ 5 × 10 4 . The synchrotron self-Compton scenario requires electron densities of 10 10 cm −3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1  R S , the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γ max , implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare. 
    more » « less
  5. Abstract We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2.°2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV γ -ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the γ -ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and γ -ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed γ -ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power. 
    more » « less