- Award ID(s):
- 1918488
- PAR ID:
- 10447187
- Date Published:
- Journal Name:
- American Mineralogist: Journal of Earth and Planetary Materials
- Volume:
- 108
- Issue:
- 5
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 915 to 927
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract A comparative analysis of Raman shifts of quartz inclusions in garnet was made along two traverses across the Connecticut Valley Trough (CVT) in western New England, USA, to examine the regional trends of quartz inclusion in garnet (QuiG) Raman barometry pressure results and to compare this method with conventional thermobarometry and the method of intersecting garnet core isopleths. Overall, Raman shifts of quartz inclusions ranged from 1·2 to 3·5 cm–1 over all field areas and displayed a south to north decrease, matching the overall decrease in mapped metamorphic grade. Raman shifts of quartz inclusions typically did not show systematic variation with respect to their radial position within a garnet crystal, and indicate that garnet probably grew at nearly isothermal and isobaric pressure–temperature (P–T) conditions. The P–T conditions inferred from conventional thermobarometry were in the range of ∼500–575 °C and ∼7·4–10·3 kbar over the sample suite and are in good agreement with previous published thermobarometry throughout the CVT. These P–T results are broadly consistent with QuiG barometry and also suggest that garnet grew isothermally and isobarically at near peak P–T conditions. However, P–T conditions and P–T paths inferred using either garnet core thermobarometry or garnet core intersecting isopleths yield results that are internally inconsistent and generally disagree with the pressure results from QuiG barometry. Garnet core isopleth intersections consistently plotted between the nominal garnet-in curve on mineral assemblage diagrams and the P–T conditions constrained by QuiG isomekes for the majority of the sample suite. Additionally, most samples’ P–T results from QuiG barometry and rim thermobarometry show marked disagreement from those derived from garnet core thermobarometry, compared with the minority that showed agreement within uncertainty. Pressures calculated from QuiG barometry ranged from 8·5 to 9·5 kbar along the traverses in western Massachusetts (MA) and central Vermont (VT) and from 6·5 to 7·5 kbar in northern VT indicating an increase in peak burial of 3–6 km from north to south. Along the western end of the central VT traverse, there are differences in measured Raman shifts and inferred peak pressures of up to 1 kbar across the Richardson Memorial Contact (RMC), indicating a possible fault contact with minor post-peak metamorphic shortening of up to ∼3 km. In contrast, along an east–west traverse in the vicinity of the Goshen Dome, MA, there was little observed variation in Raman shifts across the contact. By contrast, QuiG barometry clearly indicates significant discontinuities in peak pressure east of the Strafford Dome in central VT. This supports the interpretation that post-peak metamorphic shortening was necessary to juxtapose upper staurolite–kyanite zone rocks next to lower garnet zone pelites. Overall, it is concluded that garnet core thermobarometry and garnet core isopleths may provide unreliable results for the P–T conditions of garnet nucleation and inferred P–T paths during garnet growth unless independently verified. The consistency of QuiG results with rim thermobarometry indicates that peak metamorphic conditions previously reported for the CVT using garnet rim thermobarometry are robust and that variation in QuiG barometry results is a valuable tool to analyze structural features within a metamorphic terrane.more » « less
-
Abstract. Inclusion–host elastic thermobarometers are widely used to determine the pressure and temperature (P–T) histories of metamorphic rocks. Complex metamorphic P–T paths can affect the pressures that develop in host–inclusion systems. There are limited experimental studies that investigate how changing P–T conditions may re-equilibrate or “reset” residual pressures of inclusions. To evaluate re-equilibration of the quartz-in-garnet (QuiG) elastic thermobarometer, we performed single-, two-, and three-stage isothermal experiments. In the first stage of the experiments, oxide starting materials hydrothermally crystallised to grow garnet crystals with quartz inclusions between 700 and 800 °C and 1.0 and 3.2 GPa with constant P–T conditions for 48 h. In the second and third stage of the experiments, we isothermally changed pressure by 1.0 to 1.2 GPa for durations up to 38 d. We used Raman spectroscopy to measure strain-induced changes to the 128, 207, and 465 cm−1 Raman bands of quartz inclusions to determine the inclusion pressures (Pinc) and entrapment pressures (Ptrap) at the experimental temperature. The multi-stage experiments show that elasticity primarily controlled changes to Pinc values that occur from Ptrap through quenching to room conditions and that Pinc values measured at room conditions along with elastic modelling can be used to accurately calculate Ptrap. Quartz Pinc values in two-stage experiments re-equilibrated to give Pinc values between P1 and P2. The three-stage isothermal experiments show that the observed changes to inclusion pressures are reversible along different P–T paths to restore the re-equilibrated Pinc values back to their original entrapment isomeke at Ptrap. For rocks that underwent protracted metamorphism along complicated P–T paths, the re-equilibration experiments and viscoelastic calculations show that QuiG may underestimate maximum Ptrap conditions.
-
Abstract Metamorphic rocks from the Connecticut Valley Trough (CVT), Vermont, and Massachusetts, have been examined using quartz‐in‐garnet (QuiG) and conventional thermobarometry, thermodynamic reaction modelling, diffusion modelling, and40Ar/39Ar thermochronology to constrain their
P–T–t paths during Acadian metamorphism and subsequent exhumation. Numerous samples, collected in the vicinity of the Acadian domes, contain garnet porphyroblasts that display cloudy zones characterized by numerous fluid inclusions and modified garnet compositions associated with the replacement of the original garnet by biotite±muscovite±plagioclase±quartz±lowX grs/enrichedX sps. QuiG and conventional thermobarometry constrain both the conditions of garnet nucleation and peakP–T conditions to have occurred at ~0.85–1.05 GPa, ~550–600°C. Most notably, QuiG barometry was performed on inclusions adjacent to these reaction zones in conjunction with Gibbs method reaction modelling to reveal that these dissolution–reprecipitation reactions occurred during nearly isothermal decompression from the peakP–T conditions to around ~0.3 GPa, 550°C. Diffusion modelling reveals that the Mn zoning profiles created during garnet resorption that accompanied decompression formed in less thanc . 3 Ma, which constrains the tectonic exhumation to have occurred at 8–10 mm/year. Subsequent cooling to 500°C occurred rapidly at a rate of 100°C/Ma, followed by slower cooling reaching 1.7°C /Ma by the mid Carboniferous. This is the first reported example of QuiG barometry revealing a multi‐stage metamorphic history and highlights the utility of this method for unravelling complex metamorphic terranes. -
Abstract Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (
P–T ) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model andP–T–V equations of state for host and inclusion minerals. Elastic models are used to constrainP–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the firstP–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapmentP–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm−1bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation ( ), and elastic tensor calculation ( ), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm−1bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm−1Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an averageand of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2 σ ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as theP–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. TheP–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range ofP–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks. -
Abstract Quartz‐in‐garnet elastic geobarometry (QuiG) pressures in rocks from two Barrovian metamorphic terranes in the western US Cordilleran hinterland exceed pressures determined using chemical thermodynamics by 3–4 kbar. For this study, 135 quartz inclusions from the Funeral Mountains, California, were analysed using QuiG in five garnets from three locations representing metamorphic grades of upper greenschist, lower amphibolite, and middle amphibolite facies. From a second Barrovian terrane, the Wood Hills in northeastern Nevada, 125 quartz inclusions were analysed using QuiG in 14 garnets from a single rock sample metamorphosed to middle amphibolite facies. Pressures determined for rocks in the Funeral Mountains using QuiG and methods rooted in equilibrium thermodynamics yielded consistent pressure differences between locations, but QuiG pressures are higher. Similarly, QuiG pressures determined for rocks in the Wood Hills are higher than pressures determined by equilibrium thermodynamic approaches. Possible explanations for the pressure differences include garnet compositions not reflecting equilibrium, sources of error in thermodynamic calculations such as thermodynamic data or a‐X models, or an unknown source of systematic error that causes QuiG to overestimate pressures of entrapment. To test Raman spectroscopy's ability to reproduce inclusion pressures, pressures were calculated using Raman spectroscopy and synchrotron X‐ray diffraction, which yielded consistent pressures and support the use of the single mode‐shift of the 464 cm−1band of quartz for geobarometry, which simplifies the method by assuming hydrostatic compression of quartz. These results are compared with pressures obtained using Grüneisen tensors and show consistency between these different approaches.