Current models for elastic geobarometry have been developed with the assumption that the host and/or inclusion minerals are elastically isotropic. This assumption has limited applications of elastic thermobarometry to mineral inclusions contained in cubic quasi‐isotropic host minerals (e.g., garnet). Here, we report a new elastic model that takes into account the anisotropic elastic properties and relative crystallographic orientation (RCO) of a host‐inclusion system where both minerals are noncubic. This anisotropic elastic model can be used for host‐inclusion elastic thermobarometric calculations provided that the RCO and elastic properties of both the host and inclusion are known. We then used this anisotropic elastic model to numerically evaluate the effects of elastic anisotropy and RCO on the strains and stresses developed in a quartz inclusion entrapped in a zircon host after exhumation from known entrapment
- Award ID(s):
- 1918488
- PAR ID:
- 10447188
- Date Published:
- Journal Name:
- Annual Review of Earth and Planetary Sciences
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0084-6597
- Page Range / eLocation ID:
- 331 to 366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P ‐T conditions to roomP ‐T conditions. We conclude that the anisotropic quartz‐in‐zircon elastic model is suitable for elastic thermobarometry and may be widely applicable to crustal rocks. Our results demonstrate that isotropic elastic models cannot be used to determine the entire strain state of an elastically anisotropic inclusion contained in an elastically anisotropic host mineral, and therefore may lead to errors on estimated remnant inclusion pressures. -
Abstract Quartz crystals with zircon inclusions were synthesized using a piston-cylinder apparatus to experimentally evaluate the use of inclusions in “soft” host minerals for elastic thermobarometry. Synthesized zircon inclusion strains and, therefore, pressures (
P inc) were measured using Raman spectroscopy and then compared with the expected inclusion strains and pressures calculated from elastic models. Measured inclusion strains and inclusion pressures are systematically more tensile than the expected values and, thus, re-calculated entrapment pressures are overestimated. These discrepancies are not caused by analytical biases or assumptions in the elastic models and strain calculations. Analysis shows that inclusion strain discrepancies progressively decrease with decreasing experimental temperature in the α-quartz field. This behavior is consistent with inelastic deformation of the host–inclusion pairs induced by the development of large differential stresses during experimental cooling. Therefore, inclusion strains are more reliable for inclusions trapped at lower temperature conditions in the α-quartz field where there is less inelastic deformation of the host–inclusion systems. On the other hand, entrapment isomekes of zircon inclusions entrapped in the β-quartz stability field plot along the α–β quartz phase boundary, suggesting that the inclusion strains were mechanically reset at the phase boundary during experimental cooling and decompression. Therefore, inclusions contained in soft host minerals can be used for elastic thermobarometry and inclusions contained in β-quartz may provide constraints on theP –T at which the host–inclusion system crossed the phase boundary during exhumation. -
Abstract Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (
P–T ) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model andP–T–V equations of state for host and inclusion minerals. Elastic models are used to constrainP–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the firstP–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapmentP–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm−1bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation ( ), and elastic tensor calculation ( ), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm−1bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm−1Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an averageand of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2 σ ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as theP–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. TheP–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range ofP–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks. -
Abstract. Inclusion–host elastic thermobarometers are widely used to determine the pressure and temperature (P–T) histories of metamorphic rocks. Complex metamorphic P–T paths can affect the pressures that develop in host–inclusion systems. There are limited experimental studies that investigate how changing P–T conditions may re-equilibrate or “reset” residual pressures of inclusions. To evaluate re-equilibration of the quartz-in-garnet (QuiG) elastic thermobarometer, we performed single-, two-, and three-stage isothermal experiments. In the first stage of the experiments, oxide starting materials hydrothermally crystallised to grow garnet crystals with quartz inclusions between 700 and 800 °C and 1.0 and 3.2 GPa with constant P–T conditions for 48 h. In the second and third stage of the experiments, we isothermally changed pressure by 1.0 to 1.2 GPa for durations up to 38 d. We used Raman spectroscopy to measure strain-induced changes to the 128, 207, and 465 cm−1 Raman bands of quartz inclusions to determine the inclusion pressures (Pinc) and entrapment pressures (Ptrap) at the experimental temperature. The multi-stage experiments show that elasticity primarily controlled changes to Pinc values that occur from Ptrap through quenching to room conditions and that Pinc values measured at room conditions along with elastic modelling can be used to accurately calculate Ptrap. Quartz Pinc values in two-stage experiments re-equilibrated to give Pinc values between P1 and P2. The three-stage isothermal experiments show that the observed changes to inclusion pressures are reversible along different P–T paths to restore the re-equilibrated Pinc values back to their original entrapment isomeke at Ptrap. For rocks that underwent protracted metamorphism along complicated P–T paths, the re-equilibration experiments and viscoelastic calculations show that QuiG may underestimate maximum Ptrap conditions.
-
Abstract. The formation of high-pressure oxyhydroxide phases spanned by the components AlOOH–FeOOH–MgSiO2(OH)2 in experiments suggests their capability to retain hydrogen in Earth's lower mantle. Understanding the vibrational properties of high-pressure phases provides the basis for assessing their thermal properties, which are required to compute phase diagrams and physical properties. Vibrational properties can be highly anisotropic, in particular for materials with crystal structures of low symmetry that contain directed structural groups or components. We used nuclear resonant inelastic X-ray scattering (NRIXS) to probe lattice vibrations that involve motions of 57Fe atoms in δ-(Al0.87Fe0.13)OOH single crystals. From the recorded single-crystal NRIXS spectra, we calculated projections of the partial phonon density of states along different crystallographic directions. To describe the anisotropy of central vibrational properties, we define and derive tensors for the partial phonon density of states, the Lamb–Mössbauer factor, the mean kinetic energy per vibrational mode, and the mean force constant of 57Fe atoms. We further show how the anisotropy of the Lamb–Mössbauer factor can be translated into anisotropic displacement parameters for 57Fe atoms and relate our findings on vibrational anisotropy to the crystal structure of δ-(Al,Fe)OOH. As a potential application of single-crystal NRIXS at high pressures, we discuss the evaluation of anisotropic thermal stresses in the context of elastic geobarometry for mineral inclusions. Our results on single crystals of δ-(Al,Fe)OOH demonstrate the sensitivity of NRIXS to vibrational anisotropy and provide an in-depth description of the vibrational behavior of Fe3+ cations in a crystal structure that may motivate future applications of NRIXS to study anisotropic vibrational properties of minerals.more » « less