skip to main content


Title: Spatial distribution, diversity, and taphonomy of clypeasteroid and spatangoid echinoids of the central Florida Keys
Background Irregular echinoids are ecosystem engineers with diverse functional services. Documenting present-day distribution of those widespread organisms is important for understanding their ecological significance and enhancing our ability to interpret their rich fossil record. Methods This study summarizes SCUBA surveys of clypeasteroid and spatangoid echinoids conducted in 2020 and 2021 along the central part of the Florida Keys. The survey included observations on both live and dead specimens, their distribution, habitat preferences, abundance, and live-dead comparison. Results Echinoids were found at 17 out of 27 examined sites (63%) and occurred across a wide range of habitats including coastal seagrass meadows, subtidal sand and seagrass settings of the Hawk Channel, backreef sands, and fine muddy sands of deeper forereef habitats. The encountered species, both dead and alive, included Clypeaster rosaceus (four sites), Clypeaster subdepressus (five sites), Encope michelini (three sites), Leodia sexiesperforata (eight sites), Meoma ventricosa (nine sites), and Plagiobrissus grandis (four sites). All sites were dominated by one species, but some sites included up to five echinoid species. Live-dead fidelity was high, including a good agreement in species composition of living and dead assemblages, congruence in species rank abundance, and overlapping spatial distribution patterns. This high fidelity may either reflect long-term persistence of local echinoid populations or fragility of echinoid tests that could prevent post-mortem transport and the formation of time-averaged death assemblages. Regardless of causative factors, the live-dead comparisons suggest that irregular echinoid assemblages, from settings that are comparable to the study area, may provide a fossil record with a high spatial and compositional fidelity. The survey of live fauna is consistent with past regional surveys in terms of identity of observed species, their rank abundance, and their spatial distribution patterns. The results suggest that despite increasingly frequent hurricanes, active seasonal fisheries, massive tourism, and urban development, irregular echinoids continue to thrive across a wide range of habitats where they provide diverse ecosystem services by oxygenating sediments, recycling organic matter, supporting commensal organisms, and providing food to predators. Results reported here document the present-day status of local echinoid populations and should serve as a useful reference point for assessing future regional changes in echinoid distribution and abundance.  more » « less
Award ID(s):
2127623
NSF-PAR ID:
10447237
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PeerJ
Volume:
10
ISSN:
2167-8359
Page Range / eLocation ID:
e14245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The archaeocidarids comprise the most derived stem group echinoids and have long been regarded as closely related to the crown group. The fossil record of echinoids in the Palaeozoic is, however, poor, so details surrounding the initial divergence of crown group echinoids are not well constrained. In order to better understand the phylogenetic relationships of the most derived stem group and most basal crown group echinoids, a phylogenetic analysis was undertaken of the Archaeocidaridae, including the generaNortonechinus,Devonocidaris,Lepidocidaris,PolytaxicidarisandArchaeocidarisand the Palaeozoic miocidarid cidaroids from the genusEotiaris. We found thatArchaeocidarisappears to be paraphyletic with respect to crown group echinoids. Furthermore, we mapped character evolution along our phylogeny and found that the diversification of archaeocidarids and miocidarids may be linked to large‐scale macroecological changes taking place in the late Palaeozoic, including increasing predation pressure and echinoid encrustation by epibionts. We compared the stratigraphical distribution of archaeocidarid and miocidarid occurrences to our resulting phylogenies, and found that the fit of our cladograms to the stratigraphic record of archaeocidarid occurrences is worse than other echinoid groups, supporting the idea that the imbricate plated archaeocidarids have a poor fossil record. In the course of carrying out these analyses, we also felt it necessary to describe a new species ofArchaeocidaris,Archaeocidaris ivanovisp. nov. We also provide novel descriptions and interpretations forDevonocidaris primaevus,Archaeocidaris brownwoodensis,Archaeocidaris aphelesand revise the synonymy ofArchaeocidaris legrandensisand ?Eotiaris meurevillensis, which may be a crown group echinoid.

     
    more » « less
  2. ABSTRACT Interactions with predators and parasites can result in traces found on Recent and fossil echinoids. However, identifying specific trace makers, particularly on fossil echinoids, remains contentious. To document the range of trace morphologies present on echinoids and improve our ability to identify and quantify biotic interactions affecting echinoids, we characterized traces found on fossil echinoids using museum collections and field sampling spanning the Jurassic to Recent worldwide. Using light microscopy, 8,564 individual echinoid specimens were examined including 130 species, and 516 traces of potential biotic interactions identified. Morphological characteristics were recorded for each trace, including the shape of the trace outline, maximum diameter and cross-section profile. Based on shared morphological characteristics, it was possible to classify all traces into eight categories: circular, subcircular, elongated, irregular, rectangular, figure-eight, notched, and linear. Cross-section characteristics provided additional insights into the identity of potential trace makers. To further evaluate the proposed biotic origins of these traces, trace diversity was examined through time and compared with anticipated ecological trends associated with the diversification of echinoids, and their predators and parasites. Trace diversity increased over time, starting in the late Eocene, coincident with the proliferation of echinoid-drilling gastropods, an indication that biotic interactions intensified through evolutionary time, as predicted by several macroevolutionary hypotheses previously tested using mollusks. The morphological descriptions provided here enhance our understanding of biotic traces on fossil echinoids, and the potential to identify temporal trends in the intensity and diversity of biotic interactions that have affected echinoids throughout their evolutionary history. 
    more » « less
  3. Land-use history is the template upon which contemporary plant and tree populations establish and interact with one another and exerts a legacy on the structure and dynamics of species assemblages and ecosystems. We use the first census (2010–2014) of a 35-ha forest-dynamics plot at the Harvard Forest in central Massachusetts to describe the composition and structure of the woody plants in this plot, assess their spatial associations within and among the dominant species using univariate and bivariate spatial point-pattern analysis, and examine the interactions between land-use history and ecological processes. The plot includes 108,632 live stems ≥ 1 cm in diameter (2,215 individuals/ha) and 7,595 standing dead stems ≥ 5 cm in diameter. Live tree basal area averaged 42.25 m 2 /ha, of which 84% was represented by Tsuga canadensis (14.0 m 2 / ha), Quercus rubra (northern red oak; 9.6 m2/ ha), Acer rubrum (7.2 m 2 / ha) and Pinus strobus (eastern white pine; 4.4 m 2 / ha). These same four species also comprised 78% of the live aboveground biomass, which averaged 245.2 Mg/ ha. Across all species and size classes, the forest contains a preponderance (> 80,000) of small stems (<10-cm diameter) that exhibit a reverse-J size distribution. Significant spatial clustering of abundant overstory species was observed at all spatial scales examined. Spatial distributions of A. rubrum and Q. rubra showed negative intraspecific correlations in diameters up to at least a 150-m spatial lag, likely indicative of crowding effects in dense forest patches following intensive past land use. Bivariate marked point-pattern analysis, showed that T. canadensis and Q. rubra diameters were negatively associated with one another, indicating resource competition for light. Distribution and abundance of the common overstory species are predicted best by soil type, tree neighborhood effects, and two aspects of land-use history: when fields were abandoned in the late 19th century and the succeeding forest types recorded in 1908. In contrast, a history of intensive logging prior to 1950 and a damaging hurricane in 1938 appear to have had little effect on the distribution and abundance of present-day tree species. Our findings suggest that current day composition and structure are still being influenced by anthropogenic disturbances that occurred over a century ago. 
    more » « less
  4. Abstract

    In an era of global change, the fate and form of reef habitats will depend on shifting assemblages of organisms and their responses to multiple stressors. Multiphyletic assemblages of calcifying and bioeroding species contribute to a dynamic balance between constructive and erosive processes, and reef‐framework growth occurs only when calcium‐carbonate deposition exceeds erosion. Each contributing species exhibits a unique combination of environmental sensitivities, trophic needs, and competitive abilities, making the net outcome of their habitat‐altering behavior difficult to predict. In this study, standardized blocks of clean, massivePoriteswere placed at six reef sites in the eastern tropical Pacific, in the strongly and more‐weakly upwelling Gulfs of Panamá (GoP) and Chiriquí (GoC), respectively. Sites were chosen to characterize the unique thermal and carbonate‐chemistry conditions of each gulf. Satellite products were used to examine differences in sea‐surface productivity, and surveys were conducted to quantify the abundance of important grazing taxa. After two years in situ, thePoritesblocks were collected and scanned using high‐resolution computed tomography to volumetrically quantify both endolithic and epilithic habitat alteration. Scan‐volumes were further classified into functional groups according to morphology to quantify external bioerosion by fish and sea urchins, as well as the calcifying and bioeroding activity of crustose coralline algae, scleractinian corals, mollusks, annelids, and barnacles. The GoP, which has higher productivity, cooler temperatures, and periodically lower pH conditions, had higher rates of macroboring, but also higher rates of calcification. These unexpectedly higher rates of calcification in the GoP were a result of high recruitment of suspension‐feeding taxa, particularly barnacles and vermiform fauna that have poor reef‐forming potential. External bioerosion by grazers was the dominant process influencing these dead coral substrates across both gulfs, contributing to higher rates of net erosion in the GoC and underscoring the important roles that urchins and fish play in not just removing algae on reefs, but also eroding reef habitat. Ultimately these findings reveal that the trophic requirements of habitat‐altering taxa are closely tied to reef‐framework stability, and that environmental conditions conducive to carbonate precipitation are not necessarily those that will lead to habitat persistence.

     
    more » « less
  5. Forty-three species, and five indeterminate taxa of Florida Neogene echinoids are discussed and their geographic and stratigraphic distributions provided. These include 16 species documented from the Pleistocene, 20 from the Pliocene, and 12 from the Miocene. Eight new species are described: Rhyncholampas meansi n. sp. from the Pleistocene; Fernandezaster whisleri n. sp., Genocidaris oyeni n. sp., and Lovenia kerneri n. sp. from the Pliocene; and Clypeaster petersonorum n. sp., Gagaria hunterae n. sp., Brissopsis hoffmani n. sp., and Abertella carlsoni n. sp. from the Miocene. Additionally, we herein recognize Abertella floridana, from the Sopchoppy Limestone, as a species distinct from Abertella aberti, and provide the first documentation of Echinolampas lycopersicus, Rhyncholampas sabistonensis, and Arbia aldrichi from the fossil record of Florida. We update the taxonomy for all referred species and their known distributions. This document is intended to be a compilation of the entire Neogene echinoid record from Florida, which is now understood to have the most speciose and diverse assemblage of Neogene echinoids in the eastern United States. 
    more » « less