skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of Denial-of-Service Attacks in a Software-Defined LEO Constellation Network
Satellite communication (SATCOM) is a critical infrastructure for tactical networks--especially for the intermittent communication of submarines. To ensure data reliability, recent SATCOM research has begun to embrace several advances, such as low earth orbit (LEO) satellite networks to reduce latency and increase throughput compared to long-distance geostationary (GEO) satellites, and software-defined networking (SDN) to increase network control and security. This paper proposes an SD-LEO constellation for submarines in communication networks. An SD-LEO architecture is proposed, to Denial-of-Service (DoS) attack detection and classification using the extreme gradient boosting (XGBoost) algorithm. Numerical results demonstrate greater than ninety-eight percent in accuracy, precision, recall, and F1-scores.  more » « less
Award ID(s):
1738420
PAR ID:
10447247
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Government Microcircuit Applications and Critical Technology Conference (GOMAC Tech)
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SATCOM is crucial for tactical networks, particularly submarines with sporadic communi- cation requirements. Emerging SATCOM technologies, such as low-earth-orbit (LEO) satellite networks, provide lower latency, greater data reliability, and higher throughput than long-distance geostationary (GEO) satellites. Software-defined networking (SDN) has been introduced to SATCOM networks due to its ability to enhance management while strengthening network control and security. In our previous work, we proposed a SD-LEO constellation for naval submarine communication networks, as well as an extreme gradient boosting (XGBoost) machine-learning (ML) approach for classifying denial-of-service attacks against the constellation. Nevertheless, zero-day attacks have the potential to cause major damage to the SATCOM network, particularly the controller architecture, due to the scarcity of data for training and testing ML models due to their novelty. This study tackles this challenge by employing a predictive queuing analysis of the SD-SATCOM controller design to rapidly generate ML training data for zero- day attack detection. In addition, we redesign our singular controller architecture to a decentralized controller architecture to eliminate singular points of failure. To our knowledge, no prior research has investigated using queuing analysis to predict SD-SATCOM controller architecture network performance for ML training to prevent zero-day attacks. Our queuing analysis accelerates the training of ML models and enhances data adaptability, enabling network operators to defend against zero-day attacks without precollected data. We utilized the CatBoost algorithm to train a multi-output regression model to predict network performance statistics. Our method successfully identified and classified normal, non-attack samples and zero-day cyberattacks with over 94% accuracy, precision, recall, and f1-scores. 
    more » « less
  2. With the development of space-air-ground integrated networks, Low Earth Orbit (LEO) satellite networks are envisioned to play a crucial role in providing data transmission services in the 6G era. However, the increasing number of connected devices leads to a surge in data volume and bursty traffic patterns. Ensuring the communication stability of LEO networks has thus become essential. While Lyapunov optimization has been applied to network optimization for decades and can guarantee stability when traffic rates remain within the capacity region, its applicability in LEO satellite networks is limited due to the bursty and dynamic nature of LEO network traffic. To address this issue, we propose a robust Lyapunov optimization method to ensure stability in LEO satellite networks. We theoretically show that for a stabilizable network system, traffic rates do not have to always stay within the capacity region at every time slot. Instead, the network can accommodate temporary capacity region violations, while ensuring the long-term network stability. Extensive simulations under various traffic conditions validate the effectiveness of the robust Lyapunov optimization method, demonstrating that LEO satellite networks can maintain stability under finite violations of the capacity region. 
    more » « less
  3. LEO satellite networks possess highly dynamic topologies, with satellites moving at 27,000 km/hour to maintain their orbit. As satellites move, the characteristics of the satellite network routes change, triggering rerouting events. Frequent rerouting can cause poor performance for path-adaptive algorithms (e.g., congestion control). In this paper, we provide a thorough characterization of route variability in LEO satellite networks, focusing on route churn and RTT variability. We show that high route churn is common, with most paths used for less than half of their lifetime. With some paths used for just a few seconds. This churn is also unnecessary with rerouting leading to marginal gains in most cases (e.g., less than a 15% reduction in RTT). Moreover, we show that the high route churn is harmful to network utilization and congestion control performance. By examining RTT variability, we find that the smallest achievable RTT between two ground stations can increase by 2.5x as satellites move in their orbits. We show that the magnitude of RTT variability depends on the location of the communicating ground stations, exhibiting a spatial structure. Finally, we show that adding more satellites, and providing more routes between stations, does not necessarily reduce route variability. Rather, constellation configuration (i.e., the number of orbits and their inclination) plays a more significant role. We hope that the findings of this study will help with designing more robust routing algorithms for LEO satellite networks. 
    more » « less
  4. Abstract Low Earth Orbit (LEO) satellite networks provide global data service coverage and has become increasingly popular. Uncoordinated access channels reduce data latency in LEO networks by allowing user terminals to transmit data packets at random times to the satellite without any coordination overhead. In this paper, packet acquisition in uncoordinated access channels of LEO networks is studied and a novel solution, called ChirpPair, is proposed, with which the satellite can detect the packets as well as estimating key parameters of the packets for data demodulation. With ChirpPair, the packet preamble consists of a chirp and its conjugate, where a chirp is a complex vector with constant magnitude and linearly increasing frequency. ChirpPair adopts a multi-stage process that gradually increases the estimation accuracy of the parameters without incurring high computation complexity. ChirpPair has been demonstrated in real-world experiments with over-the-air transmissions. ChirpPair has also been evaluated by simulations with the 3GPP New Radio (NR) Non-Terrestrial Network (NTN) channel model and the results show that ChirpPair achieves high accuracy despite its low computation complexity. 
    more » « less
  5. This article presents a comprehensive summary of the regulatory environment confronting low earth orbit, non-geostationary satellite orbit (LEO NGSO) communication satellites and critically evaluates analogies from terrestrial spectrum management as possibilities for LEO NGSO satellites. This analysis provides a framework for empirical analysis of the alternatives considered. 
    more » « less