skip to main content


This content will become publicly available on June 12, 2024

Title: On the performance of machine learning fairness in image classification
In recent years, computer vision has made significant strides in enabling machines to perform a wide range of tasks, from image classification and segmentation to image generation and video analysis. It is a rapidly evolving field that aims to enable machines to interpret and understand visual information from the environment. One key task in computer vision is image classification, where algorithms identify and categorize objects in images based on their visual features. Image classification has a wide range of applications, from image search and recommendation systems to autonomous driving and medical diagnosis. However, recent research has highlighted the presence of bias in image classification algorithms, particularly with respect to human-sensitive attributes such as gender, race, and ethnicity. Some examples are computer programmers being predicted better in the context of men in images compared to women, and the accuracy of the algorithm being better on greyscale images compared to colored images. This discrepancy in identifying objects is developed through correlation the algorithm learns from the objects in context known as contextual bias. This bias can result in inaccurate decisions, with potential consequences in areas such as hiring, healthcare, and security. In this paper, we conduct an empirical study to investigate bias in the image classification domain based on sensitive attribute gender using deep convolutional neural networks (CNN) through transfer learning and minimize bias within the image context using data augmentation to improve overall model performance. In addition, cross-data generalization experiments are conducted to evaluate model robustness across popular open-source image datasets.  more » « less
Award ID(s):
2039583
NSF-PAR ID:
10447288
Author(s) / Creator(s):
;
Editor(s):
Solomon, Latasha; Schwartz, Peter J.
Date Published:
Journal Name:
Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications V
Page Range / eLocation ID:
60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vision science, particularly machine vision, has been revolutionized by introducing large-scale image datasets and statistical learning approaches. Yet, human neuroimaging studies of visual perception still rely on small numbers of images (around 100) due to time-constrained experimental procedures. To apply statistical learning approaches that include neuroscience, the number of images used in neuroimaging must be significantly increased. We present BOLD5000, a human functional MRI (fMRI) study that includes almost 5,000 distinct images depicting real-world scenes. Beyond dramatically increasing image dataset size relative to prior fMRI studies, BOLD5000 also accounts for image diversity, overlapping with standard computer vision datasets by incorporating images from the Scene UNderstanding (SUN), Common Objects in Context (COCO), and ImageNet datasets. The scale and diversity of these image datasets, combined with a slow event-related fMRI design, enables fine-grained exploration into the neural representation of a wide range of visual features, categories, and semantics. Concurrently, BOLD5000 brings us closer to realizing Marr’s dream of a singular vision science–the intertwined study of biological and computer vision.

     
    more » « less
  2. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less
  3. Abstract

    Image texture, the relative spatial arrangement of intensity values in an image, encodes valuable information about the scene. As it stands, much of this potential information remains untapped. Understanding how to decipher textural details would afford another method of extracting knowledge of the physical world from images. In this work, we attempt to bridge the gap in research between quantitative texture analysis and the visual perception of textures. The impact of changes in image texture on human observer’s ability to perform signal detection and localization tasks in complex digital images is not understood. We examine this critical question by studying task-based human observer performance in detecting and localizing signals in tomographic breast images. We have also investigated how these changes impact the formation of second-order image texture. We used digital breast tomosynthesis (DBT) an FDA approved tomographic X-ray breast imaging method as the modality of choice to show our preliminary results. Our human observer studies involve localization ROC (LROC) studies for low contrast mass detection in DBT. Simulated images are used as they offer the benefit of known ground truth. Our results prove that changes in system geometry or processing leads to changes in image texture magnitudes. We show that the variations in several well-known texture features estimated in digital images correlate with human observer detection–localization performance for signals embedded in them. This insight can allow efficient and practical techniques to identify the best imaging system design and algorithms or filtering tools by examining the changes in these texture features. This concept linking texture feature estimates and task based image quality assessment can be extended to several other imaging modalities and applications as well. It can also offer feedback in system and algorithm designs with a goal to improve perceptual benefits. Broader impact can be in wide array of areas including imaging system design, image processing, data science, machine learning, computer vision, perceptual and vision science. Our results also point to the caution that must be exercised in using these texture features as image-based radiomic features or as predictive markers for risk assessment as they are sensitive to system or image processing changes.

     
    more » « less
  4. Existing solutions to visual simultaneous localization and mapping (VSLAM) assume that errors in feature extraction and matching are independent and identically distributed (i.i.d), but this assumption is known to not be true – features extracted from low-contrast regions of images exhibit wider error distributions than features from sharp corners. Furthermore, V-SLAM algorithms are prone to catastrophic tracking failures when sensed images include challenging conditions such as specular reflections, lens flare, or shadows of dynamic objects. To address such failures, previous work has focused on building more robust visual frontends, to filter out challenging features. In this paper, we present introspective vision for SLAM (IV-SLAM), a fundamentally different approach for addressing these challenges. IV-SLAM explicitly models the noise process of reprojection errors from visual features to be context-dependent, and hence non-i.i.d. We introduce an autonomously supervised approach for IV-SLAM to collect training data to learn such a context-aware noise model. Using this learned noise model, IV-SLAM guides feature extraction to select more features from parts of the image that are likely to result in lower noise, and further incorporate the learned noise model into the joint maximum likelihood estimation, thus making it robust to the aforementioned types of errors. We present empirical results to demonstrate that IV-SLAM 1) is able to accurately predict sources of error in input images, 2) reduces tracking error compared to V-SLAM, and 3) increases the mean distance between tracking failures by more than 70% on challenging real robot data compared to V-SLAM. 
    more » « less
  5. Abstract

    An instantaneous and precise coating inspection method is imperative to mitigate the risk of flaws, defects, and discrepancies on coated surfaces. While many studies have demonstrated the effectiveness of automated visual inspection (AVI) approaches enhanced by computer vision and deep learning, critical challenges exist for practical applications in the manufacturing domain. Computer vision has proven to be inflexible, demanding sophisticated algorithms for diverse feature extraction. In deep learning, supervised approaches are constrained by the need for annotated datasets, whereas unsupervised methods often result in lower performance. Addressing these challenges, this paper proposes a novel deep learning-based automated visual inspection (AVI) framework designed to minimize the necessity for extensive feature engineering, programming, and manual data annotation in classifying fuel injection nozzles and discerning their coating interfaces from scratch. This proposed framework comprises six integral components: It begins by distinguishing between coated and uncoated nozzles through gray level co-occurrence matrix (GLCM)-based texture analysis and autoencoder (AE)-based classification. This is followed by cropping surface images from uncoated nozzles, and then building an AE model to estimate the coating interface locations on coated nozzles. The next step involves generating autonomously annotated datasets derived from these estimated coating interface locations. Subsequently, a convolutional neural network (CNN)-based detection model is trained to accurately localize the coating interface locations. The final component focuses on enhancing model performance and trustworthiness. This framework demonstrated over 95% accuracy in pinpointing the coating interfaces within the error range of ± 6 pixels and processed at a rate of 7.18 images per second. Additionally, explainable artificial intelligence (XAI) techniques such as t-distributed stochastic neighbor embedding (t-SNE) and the integrated gradient substantiated the reliability of the models.

     
    more » « less