skip to main content


Title: Dose kernel decomposition for spot‐based radiotherapy treatment planning
Abstract Purpose

Pre‐calculation of accurate dose deposition kernels for treatment planning of spot‐based radiotherapies, such as Gamma Knife (GK) and Gamma Pod (GP), can be very time‐consuming and may require large data storage with an enormous number of possible spots. We proposed a novel kernel decomposition (KD) model to address accurate and fast (real‐time) dose calculation with reduced data storage requirements for spot‐based treatment planning. The application of the KD model was demonstrated for clinical GK and GP radiotherapy platforms.

Methods

The dose deposition kernel at each spot (shot position) is modeled as the product of a shift‐invariant kernel based on a reference kernel and spatially variant scale factor. The reference kernel, one for each collimator, is defined at the center of the commissioning phantom for GK and at the center of the treatment target for GP and calculated using the Monte Carlo (MC) method. The spatially variant scale factor is defined as the ratio of the mean tissue maximum ratio (TMR) at the candidate shot position to that at the reference kernel position, and the mean TMR map is calculated within the entire volume through parallel beam ray tracing on the density image followed by averaging over all source directions. The proposed KD dose calculations were compared with the MC method and with the GK and GP treatment planning system (TPS) computations for various shot positions and collimator sizes utilizing a phantom and 14 and 12 clinical plans for GK and GP, respectively.

Results

For the phantom study, the KD Gamma index (3%/1 mm) passing rates were greater than 99% (median 100%) relative to the MC doses, except for the shots close to the boundary. The passing rates dropped below 90% for 8 mm (16 mm) shots positioned within ∼1 cm (∼2 cm) of the boundary. For the clinical GK plans, the KD Gamma passing rates were greater than 99% (median 100%) compared to the MC and greater than 92% (median 99%) compared to the TPS. For the clinical GP plans, the KD Gamma passing rates were greater than 95% (median 98%) compared to the MC and greater than 91% (median 97%) compared to the TPS. The scale factors were calculated in sub‐seconds with GPU implementation and only need to be calculated once before treatment plan optimization. The calculation of the dose kernel was also within sub‐seconds without requiring beam‐by‐beam calculation commonly done in the TPS.

Conclusion

The proposed model can provide an accurate dose and enables real‐time dose and derivative calculations by kernel shifting and scaling without pre‐calculating or requiring large data storage for GK and GP dose deposition kernels during treatment planning. This model could be useful for spot‐based radiotherapy treatment planning by allowing an efficient global fine search for optimal spots.

 
more » « less
NSF-PAR ID:
10447313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medical Physics
Volume:
49
Issue:
2
ISSN:
0094-2405
Page Range / eLocation ID:
p. 1196-1208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose

    Most commercially available treatment planning systems (TPSs) approximate the continuous delivery of volumetric modulated arc therapy (VMAT) plans with a series of discretized static beams for treatment planning, which can make VMAT dose computation extremely inefficient. In this study, we developed a polar‐coordinate‐based pencil beam (PB) algorithm for efficient VMAT dose computation with high‐resolution gantry angle sampling that can improve the computational efficiency and reduce the dose discrepancy due to the angular under‐sampling effect.

    Methods and Materials

    6 MV pencil beams were simulated on a uniform cylindrical phantom under an EGSnrc Monte Carlo (MC) environment. The MC‐generated PB kernels were collected in the polar coordinate system for each bixel on a fluence map and subsequently fitted via a series of Gaussians. The fluence was calculated using a detectors’ eye view with off‐axis and MLC transmission factors corrected. Doses of VMAT arc on the phantom were computed by summing the convolution results between the corresponding PB kernels and fluence for each bixel in the polar coordinate system. The convolution was performed using fast Fourier transform to expedite the computing speed. The calculated doses were converted to the Cartesian coordinate system and compared with the reference dose computed by a collapsed cone convolution (CCC) algorithm of the TPS. A heterogeneous phantom was created to study the heterogeneity corrections using the proposed algorithm. Ten VMAT arcs were included to evaluate the algorithm performance. Gamma analysis and computation complexity theory were used to measure the dosimetric accuracy and computational efficiency, respectively.

    Results

    The dosimetric comparisons on the homogeneous phantom between the proposed PB algorithm and the CCC algorithm for 10 VMAT arcs demonstrate that the proposed algorithm can achieve a dosimetric accuracy comparable to that of the CCC algorithm with average gamma passing rates of 96% (2%/2mm) and 98% (3%/3mm). In addition, the proposed algorithm can provide better computational efficiency for VMAT dose computation using a PC equipped with a 4‐core processor, compared to the CCC algorithm utilizing a dual 10‐core server. Moreover, the computation complexity theory reveals that the proposed algorithm has a great advantage with regard to computational efficiency for VMAT dose computation on homogeneous medium, especially when a fine angular sampling rate is applied. This can support a reduction in dose errors from the angular under‐sampling effect by using a finer angular sampling rate, while still preserving a practical computing speed. For dose calculation on the heterogeneous phantom, the proposed algorithm with heterogeneity corrections can still offer a reasonable dosimetric accuracy with comparable computational efficiency to that of the CCC algorithm.

    Conclusions

    We proposed a novel polar‐coordinate‐based pencil beam algorithm for VMAT dose computation that enables a better computational efficiency while maintaining clinically acceptable dosimetric accuracy and reducing dose error caused by the angular under‐sampling effect. It also provides a flexible VMAT dose computation structure that allows adjustable sampling rates and direct dose computation in regions of interest, which makes the algorithm potentially useful for clinical applications such as independent dose verification for VMAT patient‐specific QA.

     
    more » « less
  2. Abstract Objective . Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high computational complexity and require powerful computing devices. Therefore, to mitigate their computational burdens and broaden their applicability to a clinical setting where resource-limited devices are available, we proposed a compact dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT). Approach . The KD framework contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The student receives knowledge transferred from the teacher for better generalization. The trained student serves as the final engine for dose calculation. The model input is patient computed tomography and VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \dose was computed by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate cases were included for model training and assessment, respectively. The model’s performance (teacher/student/student-only) was evaluated by Gamma analysis and inference efficiency. Main results . The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses was 98.64 ± 0.62% (teacher), 98.13 ± 0.76% (student), and 96.95 ± 1.02% (student-only). The inference time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-only) using a central processing unit device. Significance . With the KD framework, a compact dose engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computational burdens and computing device requirements, and thus such an engine can be more clinically applicable. 
    more » « less
  3. Abstract Purpose

    The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy‐layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods.

    Methods

    GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA‐dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID‐collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume‐averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles.

    Results

    Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1‐mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in‐depth profiles examined using a 3%/2‐mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade‐off between enhancing the valley‐to‐peak ratio of the GRID delivery and the dose‐volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied.

    Conclusions

    The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS‐collimated GRID profiles.

     
    more » « less
  4. Abstract Purpose

    To develop an independent log file–based intensity‐modulated radiation therapy (IMRT) quality assurance (QA) tool for the 0.35 T magnetic resonance‐linac (MR‐linac) and investigate the ability of various IMRT plan complexity metrics to predict the QA results. Complexity metrics related to tissue heterogeneity were also introduced.

    Methods

    The tool for particle simulation (TOPAS) Monte Carlo code was utilized with a previously validated linac head model. A cohort of 29 treatment plans was selected for IMRT QA using the developed QA tool and the vendor‐supplied adaptive QA (AQA) tool. For 27 independent patient cases, various IMRT plan complexity metrics were calculated to assess the deliverability of these plans. A correlation between the gamma pass rates (GPRs) from the AQA results and calculated IMRT complexity metrics was determined using the Pearson correlation coefficients. Tissue heterogeneity complexity metrics were calculated based on the gradient of the Hounsfield units.

    Results

    The median and interquartile range for the TOPAS GPRs (3%/3 mm criteria) were 97.24% and 3.75%, respectively, and were 99.54% and 0.36% for the AQA tool, respectively. The computational time for TOPAS ranged from 4 to 8 h to achieve a statistical uncertainty of <1.5%, whereas the AQA tool had an average calculation time of a few minutes. Of the 23 calculated IMRT plan complexity metrics, the AQA GPRs had correlations with 7 out of 23 of the calculated metrics. Strong correlations (|r| > 0.7) were found between the GPRs and the heterogeneity complexity metrics introduced in this work.

    Conclusions

    An independent MC and log file–based IMRT QA tool was successfully developed and can be clinically deployed for offline QA. The complexity metrics will supplement QA reports and provide information regarding plan complexity.

     
    more » « less
  5. Abstract Background

    In a recent study, we reported beam quality correction factors,fQ, in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel‐plate ionization chamber (IC). A non‐negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90.

    Purpose

    The aim of this study was to extend our previous work by computingfQcorrection factors using the ICRU 90 stopping power data and by reporting IC‐specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of thefQcorrection factor was investigated by simulating both pristine beams and spread‐out Bragg peaks (SOBPs).

    Methods

    The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3water phantom was simulated with a uniform 10 × 10 cm2parallel beam incident on the surface. A Farmer‐type cylindrical IC (Exradin A12) and two parallel‐plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer‐provided geometrical drawings. ThefQcorrection factor was calculated in pristine carbon ion beams in the 150–450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. ThekQcorrection factor was calculated by simulating thefQocorrection factor in a60Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose‐averaged and track‐averaged LET was calculated at the depths at which thefQwas calculated.

    Results

    The ICRU 90fQcorrection factors were reported. Thepdiscorrection factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel‐plate ICs were <1.0% except for the A11pcelcorrection at the lowest energy. ThefQcorrection for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, thefQfor A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%.

    Conclusions

    The perturbation andkQcorrection factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.

     
    more » « less