skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Matter Chemistry Drives Carbon Dioxide Production of Peatlands
Abstract Peatlands play a critical role in the global carbon (C) cycle, encompassing ∼30% of the 1,500 Pg of C stored in soils worldwide. However, this C is vulnerable to climate and land‐use change. Ecosystem models predict the impact of perturbation on C fluxes based on soil C pools, yet responses could vary markedly depending on soil organic matter (SOM) chemistry. Here, we show that one SOM functional group responds strongly to environmental factors and predicts the risk of carbon dioxide (CO2) release from peatlands. The molecular composition of SOM in 125 peatlands differed markedly at the global scale due to variation in temperature, land‐use, vegetation, and nutrient status. Despite this variation, incubation of peat from a subset of 11 sites revealed thatO‐alkyl C (i.e., carbohydrates) was the strongest predictor of aerobic CO2production. This explicit link provides a simple parameter that can improve models of peatland CO2fluxes.  more » « less
Award ID(s):
1636476 2011257
PAR ID:
10447321
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, compared with C‐only simulations. These previous findings, however, rely on soil biogeochemical models that implicitly represent microbial activity and physiology. Here we present results from a biogeochemical model testbed that allows us to investigate how an explicit versus implicit representation of soil microbial activity, as represented in the MIcrobial‐MIneral Carbon Stabilization (MIMICS) and Carnegie‐Ames‐Stanford Approach (CASA) soil biogeochemical models, respectively, influence plant productivity, and terrestrial C and N fluxes at initialization and over the historical period. When forced with common boundary conditions, larger soil C pools simulated by the MIMICS model reflect longer inferred soil organic matter (SOM) turnover times than those simulated by CASA. At steady state, terrestrial ecosystems experience greater N limitation when using the MIMICS‐CN model, which also increases the inferred SOM turnover time. Over the historical period, however, warming‐induced acceleration of SOM decomposition over high latitude ecosystems increases rates of N mineralization in MIMICS‐CN. This reduces N limitation and results in faster rates of vegetation C accrual. Moreover, as SOM stoichiometry is an emergent property of MIMICS‐CN, we highlight opportunities to deepen understanding of sources of persistent SOM and explore its potential sensitivity to environmental change. Our findings underscore the need to improve understanding and representation of plant and microbial resource allocation and competition in land models that represent coupled biogeochemical cycles under global change scenarios. 
    more » « less
  2. Abstract Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post‐thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post‐thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2and CH4 fluxes from decomposition. Thus, the increased C‐storage expected from higher productivity was limited and the high global warming potential of CH4contributed a net positive warming effect. Although post‐thaw peatlands are currently C sinks due to high NPP offsetting high CO2release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition. 
    more » « less
  3. Abstract Predicting the partitioning between aqueous and gaseous C across landscapes is difficult because many factors interact to control carbon dioxide (CO2) concentrations and removal as dissolved inorganic carbon (DIC). For example, carbonate minerals buffer soil pH and allow CO2dissolution in porewaters, but nitrification of fertilizers may decrease pH so that carbonate weathering results in a gaseous CO2efflux. Here, we investigate CO2partitioning in an agricultural, first‐order, mixed‐lithology humid, temperate watershed. We quantified soil mineralogy and measured porewater chemistry, soil moisture, and soil pCO2and pO2as a function of depth at three hillslope positions. Variation of soil moisture along the hillslope was the dominant control on the concentration of soil CO2, but mineralogy acted as a secondary control on the partitioning of CO2between gaseous and aqueous phases. Regression slopes of pCO2versus pO2in the carbonate‐bearing soils indicate a deficit of aerobically respired CO2relative to O2(p < 0.05). Additionally, nitrification of upslope fertilizers did not lower soil pH and therefore did not cause a gaseous CO2flux from carbonate weathering. We concluded that in the calcareous soils, up to 43% of respired C potentially dissolves and drains from the soil rather than diffusing out to the atmosphere. To explore the possible implications of the reactions we evaluated, we used databases of carbonate minerals and land uses to map types of soil degassing behaviors. Based on our maps, the partitioning of respired soil CO2to the aqueous phase could be important in estimating ecosystem C budgets and models. 
    more » « less
  4. Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region. 
    more » « less
  5. Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 &lt; 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value. 
    more » « less