skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributed Acoustic Sensing as a Distributed Hydraulic Sensor in Fractured Bedrock
Abstract Distributed acoustic sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole, which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than 1 nm were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three‐dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO2sequestration, and remediation of groundwater in fractured bedrock.  more » « less
Award ID(s):
1920334
PAR ID:
10447327
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is growing interest in floating offshore wind turbine (FOWT) technology, where turbines are installed on floating structures anchored to the seabed, allowing wind energy development in areas unsuitable for traditional fixed-platform turbines. Responsible development requires monitoring the impact of FOWTs on marine wildlife, such as whales, throughout the operational lifecycle of the turbines. Distributed acoustic sensing (DAS)—a technology that transforms fiber-optic cables into vibration sensor arrays—has been demonstrated for acoustic monitoring of whales using seafloor telecommunications cables. However, no studies have yet evaluated DAS performance in dynamic, engineered environments, such as floating platforms or moving vessels with complex, dynamic strain loads, despite their relevance to FOWT settings. This study addresses that gap by deploying DAS aboard a boat in Monterey Bay, California, where a fiber-optic cable was lowered using a weighted and suspended mooring line, enabling vertical deployment. Humpback whale vocalizations were captured and identified in the DAS data, noise sources were identified, and DAS data were compared to audio captured by a standalone hydrophone attached to the mooring line and a nearby hydrophone on a cabled observatory. This study is unique in: (1) deploying DAS in a vertical deployment mode, where noise from turbulence, cable vibrations, and other sources posed additional challenges compared to seafloor DAS applications; (2) demonstrating DAS in a dynamic, nonstationary setup, which is uncommon for DAS interrogators typically used in more stable environments; and (3) leveraging looped sections of the cable to reduce the noise floor and mitigate the effects of excessive cable vibrations and strain. This research demonstrates DAS’s ability to capture whale vocalizations in challenging environments, highlighting its potential to enhance underwater acoustic monitoring, particularly in the context of renewable energy development in offshore environments. 
    more » « less
  2. Abstract We present a real-data test for offshore earthquake early warning (EEW) with distributed acoustic sensing (DAS) by transforming submarine fiber-optic cable into a dense seismic array. First, we constrain earthquake locations using the arrival-time information recorded by the DAS array. Second, with site effects along the cable calibrated using an independent earthquake, we estimate earthquake magnitudes directly from strain rate amplitudes by applying a scaling relation transferred from onshore DAS arrays. Our results indicate that using this single 50 km offshore DAS array can offer ∼3 s improvement in the alert time of EEW compared to onshore seismic stations. Furthermore, we simulate and demonstrate that multiple DAS arrays extending toward the trench placed along the coast can uniformly improve alert times along a subduction zone by more than 5 s. 
    more » « less
  3. Abstract The attenuation of ocean surface waves during seasonal ice cover is an important control on the evolution of Arctic coastlines. The spatial and temporal variations in this process have been challenging to resolve with conventional sampling using sparse arrays of moorings or buoys. We demonstrate a novel method for persistent observation of wave‐ice interactions using distributed acoustic sensing (DAS) along existing seafloor fiber optic telecommunications cables. DAS measurements span a 36‐km cross‐shore cable on the Beaufort Shelf from Oliktok Point, Alaska. DAS optical sensing of fiber strain‐rate provides a proxy for seafloor pressure, which we calibrate with wave buoy measurements during the ice‐free season (August 2022). We apply this calibration during the ice formation season (November 2021) to obtain unprecedented resolution of variable wave attenuation rates in new, partial ice cover. The location and strength of wave attenuation serve as proxies for ice coverage and thickness, especially during rapidly evolving events. 
    more » « less
  4. Tsunami wave observations far from the coast remain challenging due tothe logistics and cost of deploying and operating offshoreinstrumentation on a long-term basis with sufficient spatial coverageand density. Distributed Acoustic Sensing (DAS) on submarine fiber opticcables now enables real-time seafloor strain observations over distancesexceeding 100 km at a relatively low cost. Here, we evaluate thepotential contribution of DAS to tsunami warning by assessingtheoretically the sensitivity required by a DAS instrument to recordtsunami waves. Our analysis includes signals due to two effects induced by thehydrostatic pressure perturbations arising from tsunami waves: thePoisson’s effect of the submarine cable and the compliance effect of theseafloor. It also includes the effect of seafloor shear stresses andtemperature transients induced by the horizontal fluid flow associatedwith tsunami waves. The analysis is supported by fully coupled 3-Dphysics-based simulations of earthquake rupture, seismo-acoustic wavesand tsunami wave propagation. The strains from seismo-acoustic waves andstatic deformation near the earthquake source are orders of magnitudelarger than the tsunami strain signal. We illustrate a data processingprocedure to discern the tsunami signal. With enhanced low-frequencysensitivity on DAS interrogators (strain sensitivity ≈2×10 at mHz frequencies), we find that, on seafloorcables located above or near the earthquake source area, tsunamis areexpected to be observable with a sufficient signal-to-noise ratio withina few minutes of the earthquake onset. These encouraging results pavethe way towards faster tsunami warning enabled by seafloor DAS. 
    more » « less
  5. Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution. 
    more » « less