The Gulf of Maine, located in the western North Atlantic, has undergone recent, rapid ocean warming but the lack of long-term, instrumental records hampers the ability to put these significant hydrographic changes into context. Here we present multiple 300-year long geochemical records (oxygen, nitrogen, and previously published radiocarbon isotopes) measured in absolutely-dated
The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
more » « less- PAR ID:
- 10447331
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 10
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Arctica islandica shells from the western Gulf of Maine. These records, in combination with climate model simulations, suggest that the Gulf of Maine underwent a long-term cooling over most of the last 1000 years, driven primarily by volcanic forcing and North Atlantic ocean dynamics. This cooling trend was reversed by warming beginning in the late 1800s, likely due to increased atmospheric greenhouse gas concentrations and changes in western North Atlantic circulation. The climate model simulations suggest that the warming over the last century was more rapid than almost any other 100-year period in the last 1000 years in the region. -
Abstract The difference between North Atlantic subpolar gyre sea surface temperatures (SPG SSTs) and hemispheric‐ or global‐scale surface temperatures has been utilized as an index of centennial‐timescale changes in Atlantic Meridional Overturning Circulation (AMOC) strength. Here, using Community Earth System Model ensembles, we show that surface temperature‐based indices (STIs) proposed to date largely reflect global‐scale temperature trends and thus do not reflect dynamical relationships with AMOC. More broadly, we find that relationships between STIs, SPG SSTs, and AMOC strength differ greatly in significance and magnitude over different time periods because they are dependent upon the nature of external forcing. In the twentieth century, characterized by offsetting greenhouse gas and aerosol forcing, the relationship between SSTs and AMOC strength varies widely and changes sign across a 20‐member ensemble. We conclude that STIs and SPG SSTs are poor predictors of centennial‐timescale AMOC strength variations.
-
Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope–enabled climate model simulations and a wide array of mean annual water isotope (
O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE. -
Instrumental observations of subsurface ocean warming imply that ocean heat uptake has slowed 20th-century surface warming. We present high-resolution records from subpolar North Atlantic sediments that are consistent with instrumental observations of surface and deep warming/freshening and in addition reconstruct the surface-deep relation of the last 1200 years. Sites from ~1300 meters and deeper suggest an ~0.5 degrees celsius cooling across the Medieval Climate Anomaly to Little Ice Age transition that began ~1350 ± 50 common era (CE), whereas surface records suggest asynchronous cooling onset spanning ~600 years. These data suggest that ocean circulation integrates surface variability that is transmitted rapidly to depth by the Atlantic Meridional Ocean Circulation, implying that the ocean moderated Earth’s surface temperature throughout the last millennium as it does today.
-
Abstract Upwelling in eastern boundary current regions is crucial to bringing nutrient‐rich water to the photic zone and supporting the associated ecosystems. This upwelling is a result of the wind‐driven ocean circulation and is therefore susceptible to changes in the atmospheric circulation. We use the Community Earth System Model and observational data to explore the response of upwelling in the California Current and Canary Current systems to shifts in the Northern Hemisphere subtropical high‐pressure systems. We find that shifts in the North Pacific subtropical high explain a substantial fraction of both the short‐term variability and projected trend in upwelling in the California Current system during boreal summer. By contrast, the Canary Current system is less affected by shifts of the North Atlantic subtropical high, mostly because the strongest wind anomalies associated with shifts of this high‐pressure system occur too far north. We also find little impact from the Northern Hemisphere Hadley cell.