skip to main content


Title: Flux‐mediated synthesis and photocatalytic activity of NaNbO 3 particles
Abstract

Using molten‐salt synthetic techniques, NaNbO3(Space groupPbcm; No. 57) was prepared in high purity at a reaction time of 12 hours and a temperature of 900°C. All NaNbO3products were prepared from stoichiometric ratios of Nb2O5and Na2CO3together with the addition of a salt flux introduced at a 10:1 molar ratio of salt to NaNbO3, that is, using the Na2SO4, NaF, NaCl, and NaBr salts. A solid‐state synthesis was performed in the absence of a molten salt to serve as a control. The reaction products were all found to be phase pure through powder X‐ray diffraction, for example, with refined lattice constants ofa = 5.512(5) Å,b = 5.567(3) Å, andc = 15.516(8) Å from the Na2SO4salt reaction. The products were characterized using UV‐Vis diffuse reflectance spectroscopy to have a bandgap size of ~3.5 eV. The particles sizes were analyzed by scanning electron microscopy (SEM) and found to be dependent upon the flux type used, from ~<1 μm to >10 μm in length, with overall surface areas that could be varied from 0.66 m2/g (for NaF) to 1.55 m2/g (for NaBr). Cubic‐shaped particle morphologies were observed for the metal halide salts with the set of exposed (100)/(010)/(001) crystal facets, while a truncated octahedral morphology formed in the sodium sulfate salt reaction with predominantly the set of (110)/(101)/(011) crystal facets. The products were found to be photocatalytically active for hydrogen production under UV‐Vis irradiation, with the aid of a 1 wt% Pt surface cocatalyst. The platinized NaNbO3particles were suspended in an aqueous 20% methanol solution and irradiated by UV‐Vis light (λ > 230 nm). After 6 hours of irradiation, the average total hydrogen production varied with the particle morphologies and sizes, with 753 µmol for Na2SO4, 334 µmol for NaF, 290 µmol for NaCl, 81 µmol for NaBr, and 249 µmol for the solid‐state synthesized NaNbO3. These trends show a clear relationship to particle sizes, with smaller particles showing higher photocatalytic activity in the order of NaF > NaCl > NaBr. Furthermore, the particle morphologies obtained from the Na2SO4flux showed even higher photocatalytic activity, though having a relatively similar overall surface area, owing to the higher activity of the (110) crystal facets. The apparent quantum yield (100 mW/cm2,λ = 230 to 350 nm, pH = 7) was measured to be 3.7% for NaNbO3prepared using the NaF flux, but this was doubled to 6.8% when prepared using the Na2SO4flux. Thus, these results demonstrate the powerful utility of flux synthetic techniques to control particle sizes and to expose higher‐activity crystal facets to boost their photocatalytic activities for molecular hydrogen production.

 
more » « less
NSF-PAR ID:
10447334
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
1
ISSN:
0002-7820
Page Range / eLocation ID:
p. 454-464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  2. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  3. Abstract

    The preparation of a new class of reactive porous solids, prepared via straightforward salt metathesis reactions, is described here. Reaction of the dimethylammonium salt of a magnesium‐based porous coordination cage with the chloride salt of [CrIICl(Me4cyclam)]+affords a porous solid with concomitant removal of dimethylammonium chloride. The salt consists of the ions combined in the expected ratio based on their charge as confirmed by UV–vis and X‐ray photoelectron spectroscopies, ion chromatography (IC), and inductively coupled plasma mass spectrometry (ICP‐MS). The porous salt boasts a Brunauer‐Emmett‐Teller (BET) surface area of 213 m2 g−1. Single crystal X‐ray diffraction reveals the chromium(II) cations in the structure reside in the interstitial space between porous cages. Importantly, the chromium(II) centers, previously shown to react with O2to afford reactive chromium(III)‐superoxide adducts, are still accessible in the solid state as confirmed by UV–vis spectroscopy. The site‐isolated reactive centers have competence toward hydrogen atom abstraction chemistry and display significantly increased stability and reactivity as compared to dissolved ions.

     
    more » « less
  4. Abstract

    Single‐atom catalysts have demonstrated interesting activity in a variety of applications. In this study, we prepared single Co2+sites on graphitic carbon nitride (C3N4), which was doped with carbon for enhanced activity in visible‐light CO2reduction. The synthesized materials were characterized with a variety of techniques, including microscopy, X‐ray powder diffraction, UV‐vis spectroscopy, infrared spectroscopy, photoluminescence spectroscopy, and X‐ray absorption spectroscopy. Doping C3N4with carbon was found to have profound effect on the photocatalytic activity of the single Co2+sites. At relatively low levels, carbon doping enhanced the photoresponse of C3N4in the visible region and improved charge separation upon photoactivation, thereby enhancing the photocatalytic activity. High levels of carbon doping were found to be detrimental to the photocatalytic activity of the single Co2+sites by altering the structure of C3N4and generating defect sites responsible for charge recombination.

     
    more » « less
  5. Abstract

    A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry.

     
    more » « less