skip to main content


Title: Probing Dopant Redistribution, Phase Propagation, and Local Chemical Changes in the Synthesis of Layered Oxide Battery Cathodes
Abstract

Achieving the targeted control of layered oxide properties calls for more fundamental studies to mechanistically probe their evolution during their synthesis. Herein, dopant distribution, phase propagation, and local chemical changes as well as their interplay in multielement‐doped LiNiO2materials are investigated using spectroscopic, imaging, and scattering techniques. It is shown that dopants undergo dynamic redistribution in the Ni(OH)2host lattice at the early stage of calcination (below 300 °C). Such redistribution behavior exhibits strong dopant‐dependent characteristics, allowing for targeted surface and bulk doping control. The Ni oxidation process exhibits depth‐dependent characteristics and the most rapid Ni oxidation takes place between 300 and 700 °C. Using Ni oxidation state as the proxy for the phase transformation, the buildup of heterogenous phase propagation in the early stage of calcination is shown, especially along the radial direction of secondary particles. The radial heterogenous phase distribution gradually decreases upon completing the calcination. However, a high degree of mosaic‐like heterogeneity may still be present in the final product, departing from the perfect layered oxide. The present study offers fundamental insights into manipulating multiscale materials properties during calcination for obtaining stable, high‐energy layered oxide cathodes.

 
more » « less
NSF-PAR ID:
10447381
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
11
Issue:
1
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Katz, Howard (Ed.)
    Abstract

    The design of polymeric semiconductors exhibiting high electrical conductivity (σ) and thermoelectric power factor (PF) will be vital for flexible large‐area electronics. In this work, four polymers based on diketopyrrolopyrrole (DPP), 2,3‐dihydrothieno[3,4‐b][1,4]dioxine (EDOT), thieno[3,2‐b]thiophene (TT), and 3, 3′‐bis (2‐(2‐(2‐methoxyethoxy) ethoxy) ethoxy)‐2, 2′‐bithiophene (MEET) are investigated as side‐chains, with the MEET polymers newly synthesized for this study. These polymers are systematically doped with tetrafluorotetracyanoquinodimethane ( F4TCNQ), CF3SO3H, and the synthesized dopant Cp(CN)3‐(COOMe)3, differing in geometry and electron affinity. The DPP‐EDOT‐based polymer containing MEET as side‐chains exhibits the highest conductivity (σ) ≈700 S cm−1 in this series with the acidic dopant (CF3SO3H). This polymer also shows the lowest oxidation potential by cyclic voltammetry (CV), the strongest intermolecular interactions evidenced by differential scanning calorimetry (DSC), and has the most oxygen‐based functionality for possible hydrogen bonding and ionic screening. Other polymers exhibit high σ ≈300–500 S cm−1 and power factor up to 300 µW m−1K−2. The mechanism of conductivity is predominantly electronic, as validated by time‐dependent conductance studies and transient thermo voltage monitoring over time, including for those doped with the acid. These materials maintain significant thermal stability and air stability over ≈6 weeks. Density functional theory calculations reveal molecular geometries and inform about frontier energy levels. Raman spectroscopy, in conjunction with scanning electron microscopy (SEM‐EDS) and x‐ray diffraction, provides insight into the solid‐state microstructure and degree of phase separation of the doped polymer films. Infrared spectroscopy enables this study to further quantify the degree of charge transfer from polymer to dopant.

     
    more » « less
  2. The driving mileage of electric vehicles (EVs) has been substantially improved in recent years with the adoption of Ni-based layered oxide materials as the battery cathode. The average charging period of EVs is still time-consuming, compared with the short refueling time of an internal combustion engine vehicle. With the guidance from the United States Department of Energy, the charging time of refilling 60% of the battery capacity should be less than 6 min for EVs, indicating that the corresponding charging rate for the cathode materials is to be greater than 6C. However, the sluggish kinetic conditions and insufficient thermal stability of the Ni-based layered oxide materials hinder further application in fast-charging operations. Most of the recent review articles regarding Ni-based layered oxide materials as cathodes for lithium-ion batteries (LIBs) only touch degradation mechanisms under slow charging conditions. Of note, the fading mechanisms of the cathode materials for fast-charging, of which the importance abruptly increases due to the development of electric vehicles, may be significantly different from those of slow charging conditions. There are a few review articles regarding fast-charging; however, their perspectives are limited mostly to battery thermal management simulations, lacking experimental validations such as microscale structure degradations of Ni-based layered oxide cathode materials. In this review, a general and fundamental definition of fast-charging is discussed at first, and then we summarize the rate capability required in EVs and the electrochemical and kinetic properties of Ni-based layered oxide cathode materials. Next, the degradation mechanisms of LIBs leveraging Ni-based cathodes under fast-charging operation are systematically discussed from the electrode scale to the particle scale and finally the atom scale (lattice oxygen-level investigation). Then, various strategies to achieve higher rate capability, such as optimizing the synthesis process of cathode particles, fabricating single-crystalline particles, employing electrolyte additives, doping foreign ions, coating protective layers, and engineering the cathode architecture, are detailed. All these strategies need to be considered to enhance the electrochemical performance of Ni-based oxide cathode materials under fast-charging conditions. 
    more » « less
  3. For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm−2at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.

     
    more » « less
  4. Abstract

    With the goal of generating hetero‐redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2S2)CoIII(NO), N2S2=N,N‐ dibenzyl‐3,7‐diazanonane‐1,9‐dithiolate, is introduced as ligand to a well‐characterized labile [Ni0(NO)+] synthon. The reaction between [Ni0(NO+)] and [CoIII(NO)] has led to a remarkable electronic and ligand redistribution to form a heterobimetallic dinitrosyl cobalt [(N2S2)NiII∙Co(NO)2]+complex with formal two electron oxidation state switches concomitant with the nickel extraction or transfer as NiIIinto the N2S2ligand binding site. To date, this is the first reported heterobimetallic cobalt dinitrosyl complex.

     
    more » « less
  5. Abstract

    Nickel (Ni)‐based superalloys for high‐temperature applications are often designed to form a continuous and slow‐growing oxide scale by adding Al and Cr and other beneficial elements. In the present work, the critical Al concentration in Ni–Al alloys needed to establish an α‐Al2O3scale in contrast to internal oxide formation is predicted as a function of temperature by means of the CALPHAD approach coupled with models in the literature, which account for the thermodynamics and kinetics of oxidation. The present thermodynamic remodeling of the Ni–O system results in a better agreement with experimental data of oxygen solubility in Ni at high temperatures. The oxygen solubility is combined with kinetic parameters to determine oxygen permeability in Ni, and the critical Al concentration needed to establish an α‐Al2O3scale at a given exposure temperature. Good agreement is found with available experimental data for both oxygen permeability and critical Al concentration, indicating the capacity of the CALPHAD approach to tailor oxidation resistance for materials of interest using thermodynamic and kinetic knowledge.

     
    more » « less